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Abstract—Hashing technology has exhibited great cross-modal
retrieval potential due to its appealing retrieval efficiency and stor-
age effectiveness. Most current supervised cross-modal retrieval
methods heavily rely on accurate semantic supervision, which is
intractable for annotations with ever-growing sample sizes. By
comparison, the existing unsupervised methods rely on accurate
sample similarity preservation strategies with intensive computa-
tional costs to compensate for the lack of semantic guidance, which
causes these methods to lose the power to bridge the semantic
gap. Furthermore, both kinds of approaches need to search for
the nearest samples among all samples in a large search space,
whose process is laborious. To address these issues, this paper
proposes an unsupervised dual deep hashing (UDDH) method with
semantic-index and content-code for cross-modal retrieval. Deep
hashing networks are utilized to extract deep features and jointly
encode the dual hashing codes in a collaborative manner with a
common semantic index and modality content codes to simultane-
ously bridge the semantic and heterogeneous gaps for cross-modal
retrieval. The dual deep hashing architecture, comprising the head
code on semantic index and tail codes on modality content, enhances
the efficiency for cross-modal retrieval. A query sample only needs
to search for the retrieved samples with the same semantic index,
thus greatly shrinking the search space and achieving superior
retrieval efficiency. UDDH integrates the learning processes of deep
feature extraction, binary optimization, common semantic index,
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and modality content code within a unified model, allowing for
collaborative optimization to enhance the overall performance.
Extensive experiments are conducted to demonstrate the retrieval
superiority of the proposed approach over the state-of-the-art base-
lines.

Index Terms—Binary optimization, cross-modal retrieval, deep
hashing, dual coding, retrieval of similar content, sample
assignment, semantic index, unsupervised learning.

I. INTRODUCTION

R ECENTLY, with the rapid growth of massive amount of
multimodal data accumulated from various modalities,

cross-modal retrieval has attracted considerable attention. This
task aims to search for the nearest samples in the reference
database from one modality with the smallest distance to the
query sample from another modality. This nearest neighbor
search strategy incurs a very large computational burden and
experiences the curse of dimensionality when facing large-scale
high-dimensional multimodal data [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14]. Hashing technology has been
recognized as an effective solution for facilitating fast cross-
modal retrieval due to its appealing retrieval efficiency [15],
[16], [17], [18], [19], [20], [21], [22], [23]. It utilizes compact
binary codes to represent high-dimensional data with a low-
complexity nearest-neighbor search process in the Hamming
space. The traditional supervised cross-modal retrieval methods
transform multimodal features into a common semantic space
to bridge the semantic gap, where the multimodal samples
with the same semantic label are expected to be encoded as
a unified hashing code [24], [25], [26], [27], [28]. For example,
matrix tri-factorization hashing (MTFH) [28] decomposes the
semantic correlation matrix calculated on the given semantic
labels into multimodal hashing codes with different lengths for
paired or unpaired multimodal data. These methods make the
learning processes of feature representation and binary opti-
mization completely independent, which may therefore result in
suboptimal solutions. Recently, with the powerful feature rep-
resentation abilities, deep hashing-based cross-modal retrieval
methods have utilized multiple deep neural networks to simul-
taneously extract deep multimodal features and encode them as
binary codes [29]. These binary codes are optimally compatible
with deep feature representations, thus yielding discriminative

0162-8828 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on January 23,2025 at 08:32:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9214-1588
https://orcid.org/0000-0002-2472-8958
https://orcid.org/0000-0001-7171-9547
https://orcid.org/0000-0001-9763-797X
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0002-2747-7234
mailto:hmcai@scut.edu.cn


388 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 47, NO. 1, JANUARY 2025

Fig. 1. The framework of unsupervised dual deep hashing (UDDH) with semantic-index and content-code for cross-modal retrieval. In detail, we show the
cross-modal retrieval process with two modalities of image and text for illustration purposes, with the modules of deep hashing network, semantic index hashing
and multimodal content hashing of image and text. Subsequently, the multimodal data are coded as dual hashing codes with head code on the common semantic
index H , and tail codes on the modality content [Bc, Bs

i ] consisting of modality-shared content code Bc and multimodal content code Bs
i . For both the head

and tail code matrices, a row represents a sample, while a column represents a feature. To simplify the binary representation, we use white squares to represent -1
or 0, while the other colors represent 1.

features and high-quality hashing codes. Consequently, super-
vised deep hashing methods have achieved great success and
superior retrieval performance under semantic supervision [6],
[8], [30], [31], [32], [33], [34]. For example, deep semantic-
preserving ordinal hashing (DSPOH) [34] utilizes deep neural
networks to learn hash functions while preserving feature rank-
ings through ordinal embedding. DSPOH is expected to jointly
accomplish compatible hashing function learning and semantic
label prediction. However, such a supervised strategy requires
laborious sample labeling which is intractable in real-world
applications.

Alternatively, unsupervised deep hashing methods have re-
cently been explored to avoid the manual annotation proce-
dure [35], [36], [36], [37], [38], [39], [40], [41], [42], [43].
These techniques usually map the multimodal feature space into
a unified Hamming space to bridge the heterogeneous gap while
preserving the sample similarity in both spaces. For example,
unsupervised deep fusion cross-modal hashing (UDFCH) [39]
learns a unified hashing code across all modalities by preserving
the intramodality and intermodality similarities through varia-
tional inference.

However, unsupervised methods rely heavily on accurate
sample similarity to compensate for the lack of semantic guid-
ance when encoding multimodal data with a unified hashing
code. They fail to exploit the common semantic information
using only the sample similarity and thus lose the power to bridge
the semantic gap, which is significant for cross-modal retrieval.
Additionally, computing the sample similarity is expensive,
making it inapplicable to real-world retrieval applications with
ever-growing sample sizes. Therefore, it poses a challenge in

acquiring deep hashing codes for cross-modal retrieval, with effi-
ciently retaining both united semantic information and modality
content information, while simultaneously shrinking the search
space.

Herein, this paper proposes an unsupervised dual deep hash-
ing (UDDH) method with semantic-index and content-code for
cross-modal retrieval, to simultaneously exploit the common
semantic information and modality content information for
bridging the semantic and heterogeneous gaps of multimodal
data. The framework of UDDH is illustrated in Fig. 1. The
UDDH method encodes each multimodal sample using dual
binary codes, comprised of both head and tail codes. The head
code is dedicated to preserve the common semantic index, while
the tail code represents the modality-shared and multimodal
content information. To be specific, UDDH employs deep hash-
ing networks to extract multimodal features and jointly encode
the dual binary codes, thus yielding discriminative features and
high-quality hashing codes. The head code learning utilizes
modality-shared content code with clustering assignment em-
bedding to learn a common semantic index and modality-shared
content information. The tail code learning utilizes multimodal
content codes and employing a fast cross-modal affinity preser-
vation strategy to exploit multimodal content information. These
two learning schemes are incorporated seamlessly into a deep
hashing model to simultaneously bridge the semantic and het-
erogeneous gaps for cross-modal retrieval. At last, the model
could focus on the cross-modal retrieval of similar content under
the guidance of the common semantic index. UDDH integrates
the learning processes of deep feature extraction, binary opti-
mization, common semantic index and modality content code
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within a unified model, allowing for collaborative optimization
to enhance the overall performance. In the retrieval stage, this
dual deep hashing design with head code for a common semantic
index and tail codes for modality content makes it very efficient
for cross-modal retrieval. Therefore, a query sample only needs
to search for the retrieved samples with the same semantic index,
thus achieving superior retrieval efficiency.

The proposed UDDH is designed to realize unsupervised
cross-modal retrieval with dual deep hashing on a common
semantic index and modality content code. The major contri-
butions of the proposed work are summarized as follows:

1) The dual hashing architecture significantly enhances the
efficiency for cross-modal retrieval tasks. This approach
matches a query sample by retrieving samples with shared
semantic index, thus greatly shrinking the search space and
achieving superior retrieval efficiency.

2) The head code learning utilizes modality-shared codes
incorporating with clustering assignment embedding to
learn the common semantic information, with bridging
the semantic gap for cross-modal retrieval.

3) The tail code learning utilizes multimodal content codes
cooperating with a fast cross-modal affinity preservation
strategy to exploit the multimodal content information,
with bridging the heterogeneous gaps for cross-modal
retrieval.

4) UDDH employs deep hashing networks to extract mul-
timodal features and subsequently encodes them as bi-
nary codes in a collaborative manner. It integrates the
learning processes of deep feature extraction, binary opti-
mization, common semantic index, and modality content
code within a unified model, allowing for collaborative
optimization to enhance the overall performance.

The rest of this paper is organized as follows. We make an
overview of the related work on hashing-based cross-modal
retrieval in Section II. Section III provides the details of our pro-
posed UDDH method and the corresponding numerical scheme
for solving the optimization problem. Extensive experiments are
conducted to investigate the performance of UDDH in compar-
ison with the state-of-the-art baselines in Section IV. Finally,
Section V draws a conclusion.

II. OVERVIEW OF RELATED WORKS

Hashing technology has been recognized as an effective solu-
tion for facilitating fast cross-modal retrieval due to its appealing
retrieval efficiency. It utilizes compact binary codes to represent
high-dimensional data with a low complexity nearest-neighbor
search process in the Hamming space. In this section, we pro-
vide a brief overview of the four categories of hashing-based
cross-modal retrieval approaches: supervised hashing, unsuper-
vised hashing, supervised deep hashing and unsupervised deep
hashing.

Utilizing semantic labels, traditional supervised hashing-
based cross-modal retrieval methods transform multimodal fea-
tures into a shared semantic space. Consequently, samples
with the same semantic label are encoded as the unified hash-
ing code [24], [25], [26], [27], [28]. For example, matrix

tri-factorization hashing (MTFH) [28] decomposes the semantic
correlation matrix calculated on the given semantic labels into
multimodal hashing codes with different lengths for paired
or unpaired multimodal data. Fast supervised discrete hashing
(FSDH) [27] regresses the multi-modal features to their semantic
labels to learn the corresponding hashing codes with a one-step
way instead of iterative optimization. Label consistent matrix
factorization hashing (LCMFH) [24] transforms multimodal
features into the semantic space where the multimodal data with
the same semantic label are coded as a consistent hashing code
to further exploit the label information. Although supervised
methods can achieve promising retrieval performance, they rely
heavily on labels produced by manual annotation, which is
time-consuming and unsuitable for real-world applications.

Unsupervised hashing-based methods for cross-modal re-
trieval have emerged to bridge the heterogeneous gap among
multimodal data without the need for semantic labels [15], [16],
[17], [18], [19], [20], [21], [22], [23]. Most of these methods
seek to preserve samplewise similarity when guiding the hashing
code learning process. For example, joint and individual matrix
factorization hashing (JIMFH) [15] learns the individual and
unified hashing codes for multimodal data to preserve their
specific and common properties, respectively, via individual
and joint matrix factorization. Cross-modal discrete hashing
(CMDH) [20] utilizes linear and nonlinear frameworks to map
multimodal features into the Hamming space by learning a set
of shared hashing codes to bridge the modality gap. Collec-
tive reconstructive embedding (CRE) [23] employs different
modality-specific models for multimodal data to simultaneously
exploit the specific and integrated information while preserv-
ing the similarities among different modalities. However, these
unsupervised retrieval methods decompose hashing learning
into two independent steps, namely feature representation and
binary optimization, which may therefore result in suboptimal
solutions.

Recently, deep hashing-based cross-modal retrieval methods
have gained attention for their remarkably powerful feature
representation potential. These methods leverage multiple deep
neural networks to extract deep multimodal features and encode
them as binary codes simultaneously [29]. The binary codes
are optimally compatible with deep feature representations, thus
yielding discriminative features and high-quality hashing codes.

Supervised deep hashing methods have achieved great suc-
cess and superior retrieval performance under semantic su-
pervision [6], [8], [30], [31], [32], [33], [34]. For example,
deep visual-semantic hashing (DVSH) [33] consists of two
modality-specific networks and a semantic-visual fusion net-
work to jointly realize hash code learning and embedding learn-
ing. Deep semantic-preserving ordinal hashing (DSPOH) [34]
utilizes deep neural networks to learn hash functions while
preserving the rankings of feature through ordinal embedding.
DSPOH is expected to accomplish compatible hashing function
learning and semantic label prediction processes. Hierarchical
semantic structure preserving hashing (HSSPH) [44] aims at
learning more discriminative hashing codes by exploiting the
observed label hierarchy information under the guidance of
both semantic structures and labels for hierarchical semantic
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TABLE I
BRIEF DESCRIPTIONS OF THE MATHEMATICAL NOMENCLATURE IN THIS PAPER

preservation. However, such a supervised strategy requires a
laborious sample labeling step, which is intractable in real-world
applications.

Alternatively, unsupervised deep hashing methods have been
investigated to mitigate the need for manual annotation [35],
[36], [36], [37], [38], [39], [40], [41], [42], [43]. These methods
usually map the multimodal feature space into a unified Ham-
ming space to bridge the heterogeneous gap while preserving
the sample similarity in both spaces. For example, deep bi-
nary reconstruction (DBRC) [38] learns the correlated hashing
codes for all modalities by preserving their intramodality and
intermodality consistencies. By incorporating a scalable tanh
activation function, it is possible to simultaneously learn the deep
feature representations and hashing codes via the standard back-
propagation algorithm. Unsupervised deep fusion cross-modal
hashing (UDFCH) [39] learns a unified hashing code across all
modalities by preserving the intramodality and intermodality
similarities through variational inference. Attention-guided se-
mantic hashing (AGSH) [45] uses a novel deep network with
an attention fusion scheme to efficiently encode the relevant
multimodal features for cross-modal retrieval. Unsupervised
generative adversarial cross-modal hashing (UGACH) [40] aims
to make full use of the unsupervised feature representation abil-
ity of a generative adversarial network to exploit the underlying
manifold structure of multimodal data for cross-modal retrieval.
Deep joint-semantics reconstructing hashing (DJSRH) [41] in-
tegrates multimodal neighborhood information to construct a
novel affinity matrix with joint semantic information for cross-
modal retrieval. Joint-modal distribution-based similarity hash-
ing (JDSH) [36] proposes a distribution-based affinity decision
making and weighting strategy to construct a novel joint-modal
affinity matrix with preserving the cross-modal correlations
among multimodal data. Deep unsupervised cross-modal con-
trastive hashing (DUCH) [42] integrates contrastive, adversarial
and binarization objectives into a joint model for multimodal
similarity preservation, consistent cross-modal representation
and representative hashing coding, respectively. Deep graph-
neighbor coherence preserving network (DGCPN) [43] inte-
grates the coexistent similarity, graph-neighbor coherence, and
intermodality and intramodality consistency to preserve the
comprehensive similarity of multimodal data for cross-modal
retrieval.

The existing unsupervised methods rely on accurate sample
similarity to compensate for the lack of semantic guidance,
thereby requiring intensive computational costs and lose the
power to bridge the semantic gap. Furthermore, all of the
hashing-based cross-modal retrieval methods need to search for
the nearest samples among all the samples in a massive search
space, whose process is laborious.

III. METHODOLOGY

In this section, we provide a comprehensive explanation of
our proposed method, namely UDDH, which is designed for
unsupervised cross-modal retrieval. The workflow is illustrated
in Fig. 1. The nomenclature used in the paper is summarized in
Table I.

A. Unsupervised Dual Deep Hashing (UDDH) With
Semantic-Index and Content-Code for Cross-Modal Retrieval

Mathematically, suppose that a multimodal dataset {Xi}mi=1

is composed ofmmodalities and that the i-th modality is denoted
by {xij}nj=1, where n is the number of sample. The proposed
UDDH method consists of three modules, namely, deep hash-
ing network, semantic index hashing and multimodal content
hashing. The module of deep hashing network aims to extract
multimodal features from the input multimodal data and encode
them with compact hashing codes. The module of semantic
index hashing aims to learn the modality-shared content codeBc

and the semantic index H of the multimodal data. The module
of multimodal content hashing aims to learn the multimodal
content code Bs

i with a fast cross-modal affinity preservation
strategy to maintain the cross-modal correlated content. These
three modules are optimized collaboratively within a unified
deep Hamming space and can be used to enhance each other.

The first module of deep hashing network aims to employ
deep networks to extract the multimodal features and transform
the high-dimensional multimodal features into low-dimensional
hashing codes [36], [40], [41], [42], [43], this process is defined
as

Bs
i = sign

(
N̂s

i

(
Xi; θ

s
i

))
(1)

Bc = sign
(
N̂c

i

(
Xi; θ

c
i

))
(2)
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where Bs
i ∈ {−1, 1}ls×n and Bc ∈ {−1, 1}lc×n are the mul-

timodal hashing code for modality i and the modality-shared
content code, respectively, with ls and lc being the hashing
code length. N̂s

i (·) and N̂c
i(·) are the network outputs of the

multimodal hashing networks Ns
i (·) and the modality-shared

hashing network Nc
i(·), where θs

i and θc
i are their network

weights, respectively. The multimodal hashing networks Ns
i (·)

and the modality-shared hashing network Nc
i(·) aim to extract

multimodal features from the input multimodal dataXi and then
encode them with the multimodal hashing codeBs

i for modality
i and the modality-shared content code Bc, respectively. Here,
sign(·) indicates the sign operation.

To exemplify the prototype, we use the integration of text
and images as a demonstration. Specifically, we utilize the
deep ResNet18 [46] network pretrained on the ImageNet
database [47] to learn the representations for the image modality.
Different from ResNet18, the top fully connected layer and
classification layer are replaced with a new fully connected layer
and a regression layer to measure the discrepancies between
the network outputs N̂s

i (·), N̂c
i(·) and the hashing codes Bs

i ,
Bc (as illustrated in Fig. 1) [36], [40], [41], [42], [43]. The
integrated image hashing networkNet1(X1; θ

s
1;B

s
1; θ

c
1;B

c)
consisting of an image modality network Ns

1(X1; θ
s
1) and a

modality-shared network Nc
1(X1; θ

c
1) is formulated as:

min
θs
1,θ

c
1,B

s
1,B

c
Net1

(
X1; θ

s
1;B

s
1; θ

c
1;B

c
)

= min
θs
1,θ

c
1,B

s
1,B

c

(
||N̂s

1

(
X1; θ

s
1

)−Bs
1||2

+||N̂c
1

(
X1; θ

c
1

)−Bc||2
)

s.t. Bs
1 ∈ {−1, 1}ls×n,Bc ∈ {−1, 1}lc×n

(3)

where the optimization of sign function sign(·) is relaxed
with the nonlinear activation function tanh(·). ||N̂s

1(X1; θ
s
1)−

Bs
1||2 and ||N̂c

1(X1; θ
c
1)−Bc||2 indicate the image hashing

loss and modality-shared hashing loss, which aim to extract
visual features from the input images X1 and then encode them
with the image modality content codes Bs

1 and modality-shared
content code Bc, with N̂s

1(·) and N̂c
1(·) being the network

outputs.
For the text modality with topic vectors or textual tag occur-

rence vectors, first, we utilize a deep autoencoder to learn dis-
criminative feature representation. Then it cooperates with text
hashing network which consists of multiple fully connected lay-
ers to learn high-quality hashing codes (as illustrated in Fig. 1). It
is worth noting that the encoder parameters are shared between
both the deep autoencoder and text hashing networks. Conse-
quently, the deep autoencoder is optimally compatible with the
text hashing network for simultaneously learning discriminative
feature representation and high-quality hashing codes. The inte-
grated text hashing networkNet2(X2; θ

AE, θs
2;B

s
2; θ

c
2;B

c)
consisting of a deep autoencoder NAE(X2; θ

AE), a text
modality network Ns

2(X2; θ
s
2) and a modality-shared network

Nc
2(X2; θ

c
2) is formulated as follows:

min
θAE,θs

2,θ
c
2,B

s
2,B

c
Net2

(
X2; θ

AE, θs
2;B

s
2; θ

c
2;B

c
)

= min
θAE,θs

2,θ
c
2,B

s
2,B

c

⎛
⎜⎝+||N̂AE

(
X2; θ

AE
)−X2||2

+||N̂s
2

(
X2; θ

s
2

)−Bs
2||2

+||N̂c
2

(
X2; θ

c
2

)−Bc||2

⎞
⎟⎠

s.t. Bs
2 ∈ {−1, 1}ls×n,Bc ∈ {−1, 1}lc×n

(4)

where ||N̂AE(X2; θ
AE)−X2||2 is the deep autoencoder loss

which aims to measure the discrepancies between the network
output N̂AE(·) of deep autoencoder with the network weights
θAE and the input text. ||N̂s

2(X2; θ
s
2)−Bs

2||2 indicates the
text hashing loss, which aim to extract textual features from the
input texts X2 and then encode them with the text modality
content codes Bs

2. Similarly, ||N̂c
2(X2; θ

c
2)−Bc||2 indicates

the modality-shared hashing loss, which aim to extract textual
features from the input texts X2 and then encode them with the
modality-shared content code Bc, with N̂s

2(·) and N̂c
2(·) being

the network outputs.
The second module of semantic index hashing aims to utilize

the modality-shared content code Bc ∈ {−1, 1}lc×n with clus-
tering assignment embedding to learn a common semantic index.
Upon obtaining deep features with the modality-shared network
Nc

i(·), the network is trained to transform the high-dimensional
multimodal features into low-dimensional hashing code Bc.
Then a clustering assignment matrix H ∈ {0, 1}k×n is learned
in cooperation with the modality-shared content code Bc by
minimizing the K-means error to store the common semantic
information. Finally, the clustering assignment matrix H serves
as the head code of the dual hashing codes to represent the
shared semantic index for cross-modal retrieval. This module
is formulated as follows:

min
Bc,H,C

m∑
i=1

(
||N̂c

i

(
Xi; θ

c
i

)−Bc||2
)
+ ‖Bc −CH‖2

s.t. Bc ∈ {−1, 1}lc×n,C ∈ {−1, 1}lc×k,

H ∈ {0, 1}k×n,1TH = 1T (5)

where the second term is theK-means approximation error with
the clustering assignment matrix H based on the help provided
by the clustering centers C ∈ {−1, 1}lc×k. Here, the constant
k is the number of categories. Binary constraints are imposed
on C and H to ensure efficient arithmetical calculations in the
Hamming space with fast XOR operations.

The third module of multimodal content hashing aims to learn
the multimodal content code Bs

i ∈ {−1, 1}ls×n to maintain the
cross-modal correlated content. This is achieved by introducing
an integrated graph Laplacian term for each modality to preserve
the modality-correlated codes among multiple modalities. One
can optimize this module by minimizing the following energy
function:

min
Bs

i ,B
s
j ,Li,Lj

m∑
i=1

⎛
⎜⎝ ||N̂s

i

(
Xi; θ

s
i

)−Bs
i ||2+

m∑
j>i

Tr

(
Bs

i (Li +Lj)
(
Bs

j

)T)
⎞
⎟⎠

s.t. Bs
i ∈ {−1, 1}ls×n,Bs

j ∈ {−1, 1}ls×n

(6)
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where Li ∈ Rn×n, Lj ∈ Rn×n indicate the graph Laplacian
matrices calculated on the deep multimodal features for modal-
ities i and j, respectively, as follows:

Li = diag (Ai1)−Ai (7)

where Ai ∈ Rn×n represents the affinity matrix calculated on
the deep features of modality i and diag(·) indicates a diagonal
matrix with nondiagonal elements being zero.

In practice, the calculation of the affinity matrix incurs a high
computational cost. To avoid this, one can adopt the anchor graph
scheme, which computes the similarities between all samples
and several anchor points. However, this anchor selection strat-
egy relies heavily on the quality and number of selected anchor
samples since the anchors are selected randomly. Herein, we
propose a fast cross-modal affinity preservation strategy that
utilizes the clustering assignment matrix H obtained by the
module of semantic index hashing as guidance for the affinity
matrix calculation, with the clustering assignment and affinity
matrices being jointly updated during the training process. In
this way, a sample only needs to calculate its similarity with
the samples belonging to the same semantic category, thus
achieving superior efficiency. This process can be calculated
via the following function:

Apq
i =

⎧⎨
⎩
0, Hp �= Hq

exp
∥∥N̄s

i

(
xp
i ; θ̄

s
i

)− N̄s
i

(
xq
i ; θ̄

s
i

)∥∥2/ (2σ2
)
,

Hp = Hq

(8)
where N̄s

i (·) and N̄s
i (·) are the deep feature representations

extracted by the last hidden fully-connected layers of the deep
hashing networks for the samples of p and q. σ is the bandwidth
parameter. Hp(·) and Hq(·) are the p-th and q-th columns in
the clustering assignment matrixH , respectively, which indicate
the clustering labels for the samples of p and q.

By integrating (3), (4), (5), (6) of the three modules together,
the overall formula is presented below:

min
θAE,θs

i ,θ
c
i ,B

s
i ,B

s
j ,B

c,H,C
‖Bc −CH‖2

+
m∑
i=1

(
Neti +

m∑
j>i

Tr

(
Bs

i (Li +Lj)
(
Bs

j

)T))
s.t. Bs

i ∈ {−1, 1}ls×n,Bs
j ∈ {−1, 1}ls×n,

Bc ∈ {−1, 1}lc×n,C ∈ {−1, 1}lc×k,

H ∈ {0, 1}k×n,1TH = 1T

(9)

where the loss functions of integrated image hashing network
Net1 and text hashing network Net2 are formulated as the
(3),(4). The three modules of deep hashing network, semantic
index hashing and multimodal content hashing are optimized
collaboratively within the unified deep Hamming space to si-
multaneously bridge the semantic and heterogeneous gaps for
cross-modal retrieval. Then the model could focus on the cross-
modal retrieval of similar content under the guidance of the
common semantic index. Finally, the semantic index H serves
as the head code in the dual hashing codes of UDDH, while
the integrated item [Bc,Bs

i ] of modality-shared content code
Bc and multimodal content code Bs

i serve as the tail codes
of UDDH. The dual deep hashing design, featuring the head

code for the semantic index and tail codes for modality content,
enhances cross-modal retrieval efficiency through hierarchical
matching of retrieved samples.

B. Numerical Scheme to Solve UDDH

We use the popular alternating optimization scheme to obtain
the numerical solution by iteratively updating each variable
while fixing the others.

Optimizing the parameters θAE , θs
i and θc

i of the deep
hashing networks: By fixing all other variables except θAE ,
θs
i and θc

i , the main loss function (9) can be reduced to (3),(4).
This is a regression task that measures the discrepancies

between the network outputs and the hashing codes. It is simple
to optimize the parameters of the deep neural networks with
standard backpropagation under the guidance of the hashing
codes Bs

i and Bc.
Solving the modality-shared content code Bc: By fixing all

other variables except Bc, the main loss function (9) can be
reduced to

min
Bc

m∑
i=1

(
||N̂c

i

(
Xi; θ

c
i

)−Bc||2
)
+ ‖Bc −CH‖2

s.t. Bc ∈ {−1, 1}lc×n (10)

which can be reformulated with respect to Bc as

min
Bc

Tr
(
(Bc)TBc − 2(Bc)TCH

)

+
m∑
i=1

Tr
(
−2(Bc)T N̂c

i

(
Xi; θ

c
i

)
+ (Bc)TBc

)

= min
Bc

Tr

(
(Bc)T

(
−2CH − 2

m∑
i=1

N̂c
i

(
Xi; θ

c
i

)))

+ Const

s.t. Bc ∈ {−1, 1}lc×n (11)

where Tr((Bc)TBc) =
∑n

i=1 (b
c
i )

T bci = nlc, with bci being
the i-th column ofBc. This is a constant term and can be dropped
from (11), since Bc is a binary matrix. Then, one can obtain the
closed-form solution of Bc, which is given by

Bc = sign

(
CH +

m∑
i=1

N̂c
i

(
Xi; θ

c
i

))
. (12)

Optimizing the K-means clustering centers C: By fixing all
other variables except C, the main loss function (9) can be
reduced to

min
C

‖Bc −CH‖2

s.t. C ∈ {−1, 1}lc×k
(13)
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which can be rewritten as,

min
C

Tr

(
(Bc)T Bc − (Bc)TCH

−HTCTBc +HTCTCH

)

= min
C

Tr
(
CHHTCT − 2CH(Bc)T

)
+ Const

s.t. C ∈ {−1, 1}lc×k.

(14)

The term of Tr(CHHTCT ) involves discrete constraint C ∈
{−1, 1}, and it is difficult to directly obtain the closed-form
solution of C. Herein, we use the discrete cyclic coordinate
descent (DCC) to updateC bit by bit while satisfying the discrete
constraint during optimization [48]. By decomposing the matrix
H into two parts, (14) can be reformulated as:

min
C

Tr
(
CHHTCT − 2HQT

)
= min

C
2hiH �=hi

TC �=ci

T ci − 2qT
i ci

= min
C

2
(
hiH �=hi

TC �=ci

T − qT
i

)
ci

s.t. C ∈ {−1, 1}lc×k (15)

where QT = H(Bc)T , qi is the i-th column of Q. Similarly,
hi is the i-th row of H , while H �=hi

is the submatrix of H
excluding hi. ci is the i-th column of C, while C �=ci

is the
submatrix of C, excluding ci. Finally, the optimal solution ĉ for
one bit of C is obtained by

ci = sign
(
qi −C �=ci

H �=hi
hT
i

)
. (16)

Solving the common semantic index H: The main loss function
(9) can be reduced to the following equation with respect to H
by discarding the other variables:

min
H

‖Bc −CH‖2

s.t. H ∈ {0, 1}k×n,1TH = 1T . (17)

Due to the discrete constraint imposed on H , it is difficult to
solve this problem as a whole. Alternatively, we propose to solve
each column j in H independently as follows [49]:

min
hj

||bcj −Chj ||2

s.t. hj ∈ {0, 1}k×1, ||hj ||1 = 1 (18)

where hj is the j-th column of H . bcj is the j-th column of the
hashing code Bc. (18) is obtained by selecting a row r∗ from
hj , such that hr∗,j = 1 and hr �=r∗,j = 0. Finding the optimal
row r∗ is equivalent to solving for the minimal distance within
the Hamming space, whih is formulated as follows:

r∗ = argmin
r

(
Ham

(
bcr, cr

))
= argmin

r

(
lc − bcrcr

) (19)

where cr is the r-th clustering center in C and lc is the length
of the modality-shared content code for the given multimodal
data. Ham(·) denotes the distance measure in the Hamming
space, which only requirs the binary bit operation and thereby
efficiently reduces the computational burden. For single-label

Algorithm 1: Unsupervised Dual Deep Hashing (UDDH)
With Semantic-Index and Content-Code for Cross-Modal
Retrieval.

Input: Multimodal data Xi, predefined number of
semantic categories k, hashing code length lc, ls and
maximum number of iteration Iter.

Output: Head code of the semantic index H and tail codes
of the content codes [Bc,Bs

i ].
1: for 1 to Iter do

2: Fix the others and update the parameters of the deep
hashing networks in (3), (4).

3: Fix the others and update the modality-shared content
code Bc using (12).

4: for 1 to k do
5: Fix the others and update the clustering centers C for

K-means using (16).
6: end for
7: Fix the others and update the semantic index matrix H

using (19).
8: Fix the others and update the multimodal content code

Bs
i using (22).

9: end for
10: Return the head code of H and the tail code of

[Bc,Bs
i ].

data, we can utilize (19) to learn the optimal row r∗. For
multilabel data, one can learn the e labels by utilizing the top
e shortest distances in the set Ham(bcr, cr) sorted by distance,
where e is the number of multilabel.

Solving the multimodal content code Bs
i : By fixing all other

variables except Bs
i , the main loss function (9) can be reduced

to

min
Bs

i

⎛
⎜⎝ ||N̂s

i

(
Xi; θ

s
i

)−Bs
i ||2+

m∑
j>i

Tr

(
Bs

i (Li +Lj)
(
Bs

j

)T)
⎞
⎟⎠

s.t. Bs
i ∈ {−1, 1}ls×n

(20)

which can be reformulated with respect to Bs
i as

min
Bs

i

⎛
⎜⎝Tr

((
Bs

i

)T
Bs

i − 2
(
Bs

i

)T
N̂s

i

(
Xi; θ

s
i

))
+

m∑
j>i

Tr
(
Bs

j (Li + Lj)
T (Bs

i

)T)
⎞
⎟⎠

= min
Bs

i

Tr

⎛
⎝(Bs

i

)T ⎛⎝−2N̂s
i

(
Xi; θ

s
i

)
+

m∑
j>i

Bs
j (Li +Lj)

T

⎞
⎠
⎞
⎠+ Const

s.t. Bs
i ∈ {−1, 1}ls×n

(21)
where Li and Lj are the graph Laplacian matrices. Then, one
can obtain the closed-form solution of Bs

i , which is given by

Bs
i = sign

⎛
⎝2N̂s

i

(
Xi; θ

s
i

)− m∑
j>i

Bs
j (Li +Lj)

T

⎞
⎠ . (22)

We summarize the implementation details of UDDH in
Algorithm. 1.
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C. Retrieval Complexity Analysis

The proposed UDDH exhibits superiority in the retrieval
efficiency by retrieving samples from a compact search space
spanned by dual hashing. Herein, we discuss theoretically the
retrieval complexity of dual hashing design compared with the
baselines. Because the baselines need to search for the nearest
samples among all samples in the huge search space whose
process is laborious, their retrieval complexity is O(nqln),
where nq , l and n are the sample size of query set, hashing
code length, and sample size of retrieval set, respectively. By
contrast, the retrieval complexity of UDDH is O(nqlna), with
na � n, where na is the average sample size belonging to the
same semantic category. Consequently, the proposed dual deep
hashing design of UDDH with head code on semantic index
and tail codes on modality content makes it very efficient for
cross-modal retrieval. In the retrieval stage, a query sample only
needs to search for the retrieved samples with the same semantic
index, thus greatly narrowing down the search space and achiev-
ing superior retrieval efficiency. This efficiency superiority of
UDDH will be more and more competitive with the increasing
sample size of large-scale multimodal data in the real-world
applications.

IV. EXPERIMENTS

We conduct experiments to evaluate the cross-modal retrieval
performance of the proposed method and the compared bench-
mark methods. The model is evaluated on four real-world mul-
timodal datasets and compared with traditional hashing-based
and deep hashing-based cross-modal retrieval approaches. Pop-
ular metrics, including the mean average precision at top50
(MAP@50) and the Precision@10 with varying hashing code
lengths, as well as the Precision-topK curve, are used to measure
the performance of the tested methods.

Network Details: The proposed approach is trained by a
minibatch strategy with a batch-size of 20 for both the image and
text hashing networks. UDDH is trained iteratively. The hashing
codes are updated once the image and text hashing networks
are trained for 5 epochs, and the learning rate being decreased
by a factor of 10 every three epochs. The initialized learning
rates is set as 0.0003 and 0.003 for the image and text hashing
networks, respectively. Furthermore, the network optimizer is
Adam (Adaptive moment estimation) with 0.9 momentum and
0.0001 weight decay for both image and text hashing networks.

Baseline Methods: The popular benchmark hashing meth-
ods include joint and individual matrix factorization hashing
(JIMFH) [15], robust and flexible discrete hashing (RFDH) [16],
fusion similarity hashing (FSH) [17], collective matrix factor-
ization hashing (CMFH) [19] and cross-modal discrete hashing
(CMDH) [20]. Then, the cross-modal retrieval methods based
on deep hashing includes unsupervised generative adversar-
ial cross-modal hashing (UGACH) [40], deep joint-semantics
reconstructing hashing (DJSRH) [41], joint-modal distribution-
based similarity hashing (JDSH) [36], deep unsupervised
cross-modal contrastive hashing (DUCH) [42] and deep graph-
neighbor coherence preserving network (DGCPN) [43].

TABLE II
STATISTICS ON THE TESTED MULTIMODAL DATASETS

A. Datasets

Four real-world multimodal datasets, including Wiki-
pedia [1], Pascal-VOC [50], MirFlickr [51] and NUS-WIDE-
10 [52], are employed for the experiments. These are multi-
modal datasets with image-tag or image-text pairs and largely
heterogeneous feature space. Brief statistics for these datasets
are shown in Table II.

The details of each dataset are shown as follows:
� Wikipedia [1]: This dataset is an image-text pair dataset

that contains 2866 articles with their corresponding images
collected from the Wikipedia website, with 10 categories.
The images and texts in this dataset are represented by
128-dimensional scale invariant feature transform (SIFT)
features and 10-dimensional latent Dirichlet allocation
(LDA) features, respectively. In this dataset, there are 693
samples in the query subset, while 2173 samples in the
retrieval subset.

� Pascal-VOC [50]: This dataset is an image-annotation pair
dataset containing 9963 pairs of images and corresponding
textual index vectors, with 20 categories. The images and
texts in this dataset are represented by 512-dimensional
GIST features and 804 most frequent tags. 1000 samples
are randomly selected for the query subset, while the others
for the retrieval subset.

� MirFlickr [51]: This dataset is an image-annotation pair
dataset containing 25000 pairs of images and their cor-
responding textual index vectors, with 24 categories. The
images and texts in this dataset are represented by 512-
dimensional global image descriptor (GIST) features and
1386 most frequent tags. 2000 samples are randomly se-
lected as the query subset, while the others for the retrieval
subset.

� NUS-WIDE-10 [52]: The NUS-WIDE-10 dataset [52] con-
tains 10 semantic concepts with 186557 images and their
corresponding tag feature vectors. The images and texts
are represented as 500-dimensional bag of words (BOW)
features and 1000-dimensional tag vectors. 2000 samples
are randomly selected as the query subset, while the others
for the retrieval subset.

B. Experiment on the Effectiveness of Dual Hashing Coding
for Cross-Modal Retrieval

This section tests the retrieval performance of the proposed
UDDH method with that of hashing-based cross-modal retrieval
methods on four real-world multimodal datasets. The experi-
mental results in terms of the evaluation metrics of MAP@50
scores, Precision@10 scores and Precision-topK curves are
reported in Tables III, IV and Fig. 2, where I → T and T →
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TABLE III
THE RETRIEVAL PERFORMANCE OF OUR PROPOSED UDDH AND BENCHMARK METHODS ON THE WIKIPEDIA AND PASCAL-VOC DATASETS, EVALUATED BY

MAP@50 AND PRECISION@10 ACROSS DIFFERENT HASHING CODE LENGTHS

TABLE IV
THE RETRIEVAL PERFORMANCE OF OUR PROPOSED UDDH AND BENCHMARK METHODS ON THE MIRFLICKR AND NUS-WIDE-10 DATASETS, EVALUATED BY

MAP@50 AND PRECISION@10 ACROSS DIFFERENT HASHING CODE LENGTHS

I indicate the image-retrieving-text and text-retrieving-image
tasks, respectively. The optimal results are shown in bold for
visual comparison purposes. It can be observed that the proposed
UDDH method achieves uniformly superior performance over
that of the other benchmark methods.

First, we evaluate the retrieval performance achieved by the
proposed UDDH method and the compared benchmark meth-
ods with varying hashing code lengths on all four multimodal

datasets. The experimental results are shown in Tables III and
IV. It can be observed that the MAP@50 and Precision@10
values obtained by most of the methods increase as the hashing
code lengths increases, due to the fact that more comprehensive
information is stored by long hashing codes. In particular, the
performance of UDDH is unsatisfactory when the hashing code
lengths is 32-bits on the datasets of Wikipedia and MirFlickr.
However, UDDH achieves uniformly superior performance and
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Fig. 2. Precision-topK curves produced by all cross-modal retrieval methods on multimodal datasets. The top part indicates the image-retrieving-text task
conducted on the (a) Wikipedia, (b) Pascal-VOC, (c) MirFlickr and (d) NUS-WIDE-10 datasets, respectively. The bottom part indicates the text-retrieving-image
task conducted on the (e) Wikipedia, (f) Pascal-VOC, (g) MirFlickr and (h) NUS-WIDE-10 datasets, respectively.

remains more stable than the other benchmark methods with
hashing code lengths that are greater than or equal to 64-bits.

Second, it can be observed from the Tables III, IV and Fig. 2
that the performance of the traditional cross-modal retrieval
methods is unsatisfactory on the four real-world multimodal
datasets. The poor performance of these handcrafted-feature-
based methods may result from the inaccurate similarities caused
by largely heterogeneous gaps. Furthermore, their deep feature
representation and binary optimization processes are completely
independent and fail to learn more discriminative features and
more effective hashing codes. In comparison, our proposed
UDDH method utilizes deep hashing networks to extract multi-
modal deep features, exhibiting impressive and powerful feature
representation potential, and simultaneously and jointly encode
the features as binary codes. Binary optimization is optimally
compatible with deep feature representation, thus yielding dis-
criminative features and high-quality hashing codes.

Third, the cross-modal retrieval methods based on deep
hashing, including UGACH [40], DJSRH [41], JDSH [36],
DUCH [42] and DGCPN [43], are employed for further com-
parison. The experimental results are reported in Tables III,
IV and Fig. 2. Our proposed UDDH also achieves superior
performance than the deep hashing-based cross-modal retrieval
methods. The main reason for this finding is that in the dual
hashing design, the head code learning utilizes modality-shared
content code with clustering assignment embedding to learn
a common semantic index and modality-shared content infor-
mation, and the tail code learning utilizes multimodal content
codes and works with a fast cross-modal affinity preservation

strategy to exploit multimodal content information. These pieces
of common semantic information and modality content infor-
mation are exploited and seamlessly incorporated into our deep
hashing networks to simultaneously bridge the semantic and
heterogeneous gaps for cross-modal retrieval. Consequently,
the dual hashing design of UDDH can also achieve superior
retrieval performance. Furthermore, the learning of deep feature
extraction, binary optimization, the common semantic index
and the modality content codes are integrated into a unified
model with collaborative optimization so that they can ben-
efit from each other and further improve the final retrieval
performance.

Finally, we present the convergence analysis of the proposed
UDDH. The numerical scheme of UDDH utilizes the standard
alternating optimization scheme to obtain numerical solutions
by iteratively updating each variable while fixing the others.
As we can see, the designed numerical scheme converges very
quickly and the MAP@50 scores become stable within just a
few iterations, as shown in Fig. 3. Therefore, the optimization
scheme of our proposed UDDH achieves superior efficiency. In
our experiments, we use the solution at iteration 10 as our final
experimental results.

C. Experiment on the Effectiveness Test of Samplewise
Retrieval of Similar Content

Our approach is different from the traditional supervised or
unsupervised cross-modal retrieval methods, which transform
multimodal features into a common semantic space or latent
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Fig. 3. The values obtained for the loss function and the MAP@50 metric as the number of iterations on the (a) Wikipedia, (b) Pascal-VOC, (c) MirFlickr and (d)
NUS-WIDE-10 datasets, respectively. The left ordinate is the MAP@50 value, while the right ordinate is the loss function value. The proposed UDDH converges
very quickly and the solution becomes stable within just a few iterations.

Fig. 4. Illustrative examples on the top five retrieval results obtained by the UDDH on the Wikipedia dataset. One can verify that the top retrieved samples well
match the query samples with very similar image content.

space. In this space, the multimodal features are encoded as
identical hashing codes in general. For example, traditional
supervised methods mainly focus on semanticwise cross-modal
retrieval and easily lose sample-specific and modality-specific
properties. Herein, our proposed UDDH method focuses on
samplewise similar content cross-modal retrieval with semantic
guidance by preserving samplewise multimodal similarities.
Therefore, we illustrate the top five retrieval results with their
associated semantic labels in Fig. 4. For visual convenience,
we replace the Wikipedia text samples with their corresponding
images. The successful and failed retrieval results are high-
lighted in blue and orange, respectively. The number in the
figure indicates the number of matched hashing codes out of all
hashing codes. We can see that the top retrieved samples match
the query samples well based on the image content. Although
several retrieved semantic labels are incorrect, their content is
similar to the query content. Consequently, after obtaining the

head code of the semantic index, the proposed UDDH method
can exploit the samplewise correlated content under the guidance
of the same semantic index, then focusing on the samplewise
retrieval of similar content.

V. CONCLUSION

The existing unsupervised hashing-based cross-modal re-
trieval methods rely on accurate sample similarity. Such ap-
proach requires searching for the nearest samples within a vast
search space, resulting in intensive computation. In this paper,
we have proposed UDDH which encodes each input multimodal
sample by dual binary codes with a head code for the semantic
index and tail codes for the modality content. This dual hashing
design makes the proposed approach very efficient and effective
for cross-modal retrieval. UDDH utilizes deep hashing networks
to extract multimodal features and jointly encode them as binary
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codes, thus yielding discriminative features and high-quality
hashing codes. Experimental results have demonstrated that
the proposed UDDH method achieves superior performance
in cross-modal retrieval tasks, by exploiting common semantic
information and modality content information to simultaneously
bridge the semantic and heterogeneous gaps.
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