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a b s t r a c t 

Images of outdoor scenes captured in bad weathers are often plagued by the limited visibility and poor 

contrast, and such degradations are spatially-varying. Differing from most previous dehazing approaches 

that remove the haze effect in spatial domain and often suffer from the noise problem, this paper 

presents an efficient multi-scale correlated wavelet approach to solve the image dehazing and denoising 

problem in the frequency domain. To this end, we have heuristically found a generic regularity in nature 

images that the haze is typically distributed in the low frequency spectrum of its multi-scale wavelet 

decomposition. Benefited from this separation, we first propose an open dark channel model (ODCM) 

to remove the haze effect in the low frequency part. Then, by considering the coefficient relationships 

between the low frequency and high frequency parts, we employ the soft-thresholding operation to re- 

duce the noise and synchronously utilize the estimated transmission in ODCM to further enhance the 

texture details in the high frequency parts adaptively. Finally, the haze-free image can be well restored 

via the wavelet reconstruction of the recovered low frequency part and enhanced high frequency parts 

correlatively. The proposed approach aims not only to significantly increase the perceptual visibility, but 

also to preserve more texture details and reduce the noise effect as well. The extensive experiments have 

shown that the proposed approach yields comparative and even better performance in comparison with 

the state-of-the-art competing techniques. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Haze is a common atmospheric phenomenon, where fog, dust,

ist and other particles often deflect the light from its original

ourse of propagation. Consequently, images captured in these un-

avorable atmospheric conditions are often in a poor contrast and

ffer a limited visibility of the scene contents. In practice, haze is

n annoyance problem to photographers since it degrades the im-

ge quality, and it is also a major threat to the reliability of many

ision understanding applications, such as video surveillance, in-

elligent vehicles, satellite imaging, aerial imagery and target iden-

ification ( Gibson et al., 2012 ) and so forth. For instance, the per-

ormance of feature detection will inevitably suffer from the low-
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ontrast scene in hazy images. Nevertheless, haze removal still re-

ains a challenge problem due to the inherent ambiguity between

he haze and the underlying scene. Furthermore, the captured im-

ges often contain some noise, which would be appeared and am-

lified during the dehazing process if it is ignored. Therefore, haze

nd noise removal are highly desirable in the degraded scenes, and

mproving the restoring performance will benefit many vision tasks

ractically. 

In general, image dehazing can be considered as a process of

emoving haze effects in captured images and reconstructing the

riginal colors of natural scenes. Intuitively, traditional scene con-

rast enhancement such as the histogram equalization ( Zhu et al.,

999 ), linear mapping, retinex-mapping ( Jobson et al., 1997 ) and

he gamma correction ( Katajamäki, 2003 ) are able to improve the

erceptual quality of scene appearance. However, these methods

o not consider the difference of haze thickness, which is pro-

ortional to object depths. Accordingly, these approaches often

ailed to compensate the haze degradation adaptively. To tackle

his problem, some researchers selected to utilize some additional
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information or multiple images to reduce the haze effect. For in-

stance, Narasimhan and Nayar (20 0 0) utilized some user-specified

information interactively and exploited a physical model for haze

removal. As the amount of light scattering was an unknown func-

tion of depth, such exploited model was often underconstrained

if only one image was selected as a single input. Differently,

Schechner et al. (2001) selected multiple images of same scene

to remove the haze by different degrees of polarization. Although

these two methods were able to improve the visibility of hazy im-

ages and produce impressive results, the interactive inputs spec-

ified by the users in the changing scenes may not be easily ob-

tained while the multiple images were not available in practice. 

In recent years, significant progresses in single image haze re-

moval have been made by using reasonable priors or assumptions.

Along this way, Tan (2008) aimed to maximize the local contrast

to restore the degraded scenes, provided that the images with en-

hanced visibility have more contrast than images plagued by bad

weather. Although this method is able to improve the visibility of

hazy images and produce impressive results, it often tends to be

over-saturated and may fail to maintain the color fidelity because

the haze-free images do not always have the maximum contrast.

Similarly, Fattal (2008) estimated the transmission through a re-

fined image formation model, in which the cost functions of sur-

face shading and transmission were considered to be statistically

uncorrelated. Kratz and Nishino (2009) assumed that the scene

albedo and depth were two statistically independent latent lay-

ers, and thus modeled the image with a factorial Markov random

field (FMRF) for haze removal. These two approaches were able to

produce visually impressive results, but which may fail to remove

the haze effects where these assumptions are broken. For instance,

these two method required the surface shading and transmission

to vary significantly in a local patch, which were not reliable in

dense hazy regions. 

Until recently, He et al. (2009, 2011) leveraged an empirical

observation that the local patches in haze-free images often con-

tained some low albedo values in at least one color channel. In-

spired by this finding, they proposed a dark channel prior (DCP)

to estimate the haze thickness and utilized the soft-mating tech-

nique to reduce the haze effect. By using DCP information, some

improved works ( Gibson and Nguyen, 2013; He et al., 2013; Tarel

and Hautiere, 2009; Xie et al., 2010 ) were also developed to esti-

mate the haze thickness and attempted to recover a high-quality

haze-free image. Despite these remarkable progresses have been

exploited and the satisfactory performances in terms of better vis-

ibility are obtained, the DCP may be invalid when the scene ap-

pearance is inherently similar to the airlight or the input hazy im-

age contains some significant noises. Later, Meng et al. (2013) in-

troduced a boundary constraint on the transmission function,

while Fattal (2014) presented a novel color-line pixel regularity

to obtain a more reliable transmission. However, if the scene is

very bright, the transmissions estimated by these two methods

may be severely underestimated across the entire image. Later,

Zhu et al. (2015) created a linear model to estimate the scene

depth under a novel color attenuation prior and learned the model

parameters in HSV space. Although this approach can produce vi-

sually pleasing performance, it often fails to remove the dense

haze in the remote scenes. 

Evidently, most of the existing image dehazing approaches se-

lected to remove the haze effect in spatial domain. Differently,

Du et al. (2002) first decomposed the high-resolution satellite im-

ages into different spatial layers, and then utilized the frequency

characteristics to achieve haze removal. Nevertheless, the primary

drawback of this approach in its present form is to select the

decomposition level and collect a haze-free reference image pre-

cisely. In addition, this approach did not consider the coefficient

relationships of different spatial layers, and it is unsuitable for
aze removal in natural images. Later, Rong and Jun (2014) ap-

lied the wavelet transform to achieve image dehazing, in which

he unsharp masking algorithm was applied to improve the image

ontrast while the dual-threshold algorithm was adopted to en-

ance the clarity of details. However, this approach often induced

 blur reconstruction and the visual performance was a bit poor.

he main reason lies that the straightforward enhancement with

onlinear compensation would change the coefficient relationships

uch that the wavelet reconstruction may fail to preserve the orig-

nal texture details. Despite these remarkable progresses have been

xploited for haze removal, the aforementioned approaches may be

nvalid when the input hazy image contains significant noises. 

In this paper, we present a novel perspective for single im-

ge dehazing using multi-scale correlated wavelet framework. As

pposed to most recent popular approaches that removing the

aze effect in spatial domain, our work treats the dehazing prob-

em in frequency domain and is inherently different from the

orks ( Du et al., 2002; Rong and Jun, 2014 ). The method in

u et al. (2002) highly relies on another haze-free reference image

f the same scene, while the approach in Rong and Jun (2014) did

ot consider the scene depth physically. By contrast, our proposed

pproach derives the haze under physical model and could remove

aze effect in a single input, which improves the state-of-the-art

ethods by providing the following three contributions: 1) Taking

dvantage of haze typically distributes in the low frequency spec-

rum, we propose an open dark channel model to reduce the haze

ffect in this part efficiently; 2) Our dehazing framework is the

rst to exploit the relationships of wavelet coefficients for haze re-

oval and texture enhancement simultaneously; 3) The proposed

pproach aims not only to significantly increase the perceptual vis-

bility of haze scene, but also to reduce the noise effect as well. The

xperiments have shown its outstanding performance. 

The rest of the paper is structured as follows: Section 2 intro-

uces the popular atmospheric scattering model, haze observations

n frequency domain and wavelet analysis model. In Section 3 , we

resent the proposed framework and its implementation details.

ection 4 provides the experimental results and discussions. Fi-

ally, we draw a conclusion in Section 5 . 

. Background and observation 

This section shall first overview the atmospheric scattering

odel, and subsequently elaborate the motivation of haze removal

n frequency domain. Finally, the core idea of multi-scale wavelet

ecomposition is simplified for easy readable. 

.1. Atmospheric scattering model 

In computer vision, the formation of hazy images is usually de-

cribed by the atmospheric scattering model ( Narasimhan and Na-

ar, 2003 ): 

 (x) = J (x) t(x) + A (1 − t (x) ) , (1)

here I is an observed hazy image, J is the scene radiance to be

ecovered, x = (x, y ) indexes the pixel position, A is the global at-

ospheric light, and 0 ≤ t (x) ≤ 1 is the medium transmission de-

cribing the portion of the light that is not scattered and reaches

o the camera. In a homogeneous atmosphere, the transmission t

an be further expressed as t(x) = e −βd(x) , where d (x) is the dis-

ance from the scene point to the camera, and β is the scatter-

ng coefficient of the atmosphere. In the right-hand side of Eq. (1) ,

he first term perceived as direct attenuation often decreases the

rightness, while the second term known as airlight could com-

ensate the brightness and decrease the saturation. 

The goal of image dehazing is to recover the scene radiance J (x)

rom I (x) based on Eq. (1) . This requires us to estimate the trans-

ission function t (x) and the global atmospheric light A . Once A
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Fig. 1. The Fourier transform applied to hazy and hazy-free images, respectively. The top examples are the input hazy images and below examples are the hazy-free images, 

in which the right parts are the haze and haze-free image pairs. 
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Fig. 2. One stage of 2-D multi-scale wavelet decomposition. 

ψ

w  

t  

a  

h  

s

 

p  

s  

o{
 

l  

t  
nd t are known, the J can be well recovered by inverting the at-

ospheric scattering model: 

(x) = (I(x) − A ) / max (t(x) , σ ) + A. (2)

here σ is a lower bound utilized to restrict the transmission, and

 typical value can be set at 0.1 ( He et al., 2011 ). 

.2. Observations of haze analysis in frequency domain 

In general, the direct attenuation is often characterized by fast

patial variation due to the surface reflectance and light changing,

hile the airlight is modeled by slow spatial variation corresponds

o the atmospheric scattering. Since the haze is mainly generated

y atmospheric scattering and widely spread, the spatial variation

f its distribution will be very slow and smooth. Referring to the

mage processing in the frequency domain, it is reasonable to as-

ume that the haze almost resides in the low frequency compo-

ents. 

Representative observations are shown in Fig. 1 , it can be

learly found that the haze-free images often exhibit more high

requency spectrum, while the hazy images always deliver more

ow frequency spectrum. The similar observations are also ap-

eared within the haze and haze-free image pairs. That is, the haze

istribution typically resides within the spatially lower frequency

omponents. Therefore, it is quite natural to remove the haze in

he low frequency part practically. 

.3. Multi-scale wavelet analysis model 

In recent years, wavelets have recently emerged as an effec-

ive tool to analyze image information ( Mallat, 1989 ), because they

rovide a natural partition of the image spectrum into multi-scale

nd oriented sub-bands. A wavelet basis for multi-scale analysis is

omprised of a hierarchy of linear spaces 
{

V j+1 
∣∣V j+1 ⊂ V j 

}
and

ts orthogonal complement space 
{

W 

j+1 = V j / V j+1 
}

. Accordingly,

 wavelet basis can be constructed by following two functions: the

caling function φ and the wavelet function ψ . 

(x ) = 

√ 

2 

∑ 

l(k ) φ( 2 

j x − k ) , (3) 

k 
(x ) = 

√ 

2 

∑ 

k 
h (k ) ψ( 2 

j x − k ) . (4) 

here l ( k ) represents the lowpass coefficient and it must satisfy

he condition 

∑ 

k l(k ) = 

√ 

2 , h ( k ) denotes the highpass coefficient

nd it is required to be orthogonal to the lowpass coefficient, i.e.,

 (k ) = (−1) k l(1 − k ) . Specifically, 
√ 

2 maintains the norm of the

caling function with the scale of two. 

As shown in Fig. 2 , the 1-D multi-resolution wavelet decom-

osition can be easily extended to two dimensions by introducing

eparable 2-D scaling and wavelet functions as the tensor products

f their 1-D complements: 

φLL (x, y ) = φ(x ) φ(y ) , ψ LH (x, y ) = φ(x ) ψ(y ) 
ψ HL (x, y ) = ψ(x ) φ(y ) , ψ HH (x, y ) = ψ (x ) ψ (y ) 

. (5) 

For image analysis, the 2-D wavelet analysis operation equiva-

ently consists of filtering and down sampling horizontally using

he 1-D low pass filter L and high pass filter H to each row in the
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Fig. 3. The flowchart of the proposed image dehazing and denoising framework. 
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image I (obtain I L and I H ) and followed by vertically filtering and

down sampling using L and H to each column. As a result, four

sub-images I LL ( x, y ) I LH ( x, y ), I HL ( x, y ) and I HH ( x, y ) of one level of

decomposition can be obtained. Specifically, I LL ( x, y ) is a smooth

sub-image corresponding to the low-frequency band (i.e., subsam-

pled version of the original image), while I LH ( x, y ), I HL ( x, y ) and

I HH ( x, y ) denote the high-frequency bands with respected to the

horizontal, vertical and diagonal details of the original image, re-

spectively. 

3. The proposed methodology 

As discussed in Section 2.2 , it is natural to focus on haze re-

moval in the low frequency band and at the same time enhance

the texture details in the high frequency bands. In addition, the

significant noise is almost resided in the high frequency spectrum,

which motivates us to reduce the noise impacts in this part exten-

sively. Benefits from wavelet decomposition, as shown in Fig. 3 , we

propose an open dark channel model (ODCM) to remove the haze

effect in low frequency part. Then, we select to reduce the noise

impact and utilize the estimated transmission value in ODCM to

further enhance the texture details in high frequency parts adap-

tively. Finally, the haze-free image can be well restored via the

wavelet reconstruction. 

3.1. Haze removal in low frequency 

Since the haze typically distributes with spatially lower fre-

quency band, the popular atmospheric scattering model can be

well applied to remove the haze effect from this part extensively.

Suppose the intensity value of sub-image I with respected to the

lower frequency band is normalized between 0 and 1, the corre-

sponding scene radiance J is always bounded and we can derive

the following constraint for J : 

0 � J c (x) � 1 , ∀ c ∈ { r, g, b} , (6)

where c denotes the color channel in RGB space, 0 and 1 are the

physical bounds to avoid undershoot and overshoot of resulting

image. By examining the physical properties in Eq. (1) , it is easy

to obtain t(x) = ‖ I(x) − A ‖ / ‖ J(x) − A ‖ , and the above requirement

on J (x), in turn, imposes a boundary constraint on t (x). Suppose

that the global atmospheric light A is given, we can derive the fol-

lowing constraint on t (x): 

0 � t (x) � t(x) � 1 , (7)
b 
here t b (x) is the lower bound of t (x), given by 

 b (x) = min 

{
1 − min 

c 

{
I c (x) 

A 

c 
, 

˜ I c (x) 

˜ A 

c 

}
, 1 

}
, (8)

here ˜ I c = 1 − I c is the inverse image of I c and 

˜ A 

c = 1 − A 

c . Evi-

ently, Eq. (7) shows the large ambiguity in identifying the correct

 . Alternatively, estimating optimal transmission t can be converted

nto the following energy minimization problem: 

rg min 

t 
�(J(x)) , s . t . 

{
t b (x) ≤ t(x) ≤ 1 , 

J( x) = (I(x) − A ) /t(x) + A 

(9)

here �( · ) is an energy function that prompts the recovered im-

ge J to meet the natural image statistics (e.g., DCP) and penal-

zes the solution of t far away from the natural image statistics

e.g., total variation ( Chen et al., 2016 )). That is, the optimal so-

ution of t should be piecewise smooth and contain less statis-

ical information about scene appearance. However, on the one

and, it is extremely difficult to find a good form of �( · ) in the

rea of image restoration. On the other hand, the regularization

erm on transmission t can be fairly complicated when a partic-

lar form of � is employed. Instead of designing a particular form

f �, He et al. (2011) first assume that the transmission t is lo-

ally constant, and then apply a minimum filter to achieve a tight

ower bound of t : ˜ t (x) = 1 − min 

y ∈ �x 

(
min 

c 

{ 

I c (y) 
A c 

} )
, where �x is a

ocal patch centered at x. Nevertheless, this method without in-

erent boundary constraint often tends to over-estimate the thick-

ess of the haze, which cannot handle the very bright regions, e.g.,

ky part. In most cases, the optimal global atmospheric light A is

 little darker than the brightest pixels in the image. Under such

ircumstance, the DCP often fails to adapt those brightest pixels.

herefore, the boundary constraint regularized on scene transmis-

ion is necessary. In addition, it can be further found that the min-

mum operator may result in an inconsistent profile with the input

mage. To tackle these issues, we add the inherent boundary con-

traint and take a morphological open operation to precisely esti-

ate the transmission map: 

˜ 
 (x) = 1 − open 

B, y ∈ �x 

(
min 

c 

{
I c (y) 

A 

c 
, 

˜ I c (y) 

˜ A 

c 

})
. (10)

pen 

B 

(I) = max { min { I ( x −s, y −t ) −B (s, t) } + B (s, t) } (11)

here B ( s, t ) is the structuring element and its size is s × t . In par-

icular, the square structuring element is employed and its corre-
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Fig. 4. A synthetic image processed by minimum filter and the morphological open 

operation, in which the size of synthetic image is 400 × 300 and the size of local 

patch � is 20 × 20. 

Fig. 5. Image dehazing results obtained by DCP and ODCM, in which the image 

size is 332 × 500 and the size of local patch � is 20 × 20. From left to right 

of the top row: original hazy image, dark channel image, refined transmission map 

and the dehazing result obtained by He et al. (2011) ; From left to right of the bot- 

tom row: boundary map constrained by min 
c 

{ 
I c (y) 

A c 
, 

˜ I c (y) 
˜ A c 

} 
, open dark channel im- 

age, refined transmission map and the dehazing result obtained by our proposed 

approach. 
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ponding size is generally set as the same to the local patch �x .

ntrinsically, the open operation is able to remove small bright

etails and impose spatial coherency. Therefore, such operation

ould be more reasonable to outline a precise scene transmission.

ypical examples are shown in Figs. 4 and 5 , in which the yel-

ow curve labels the profile of the different views. In Fig. 4 , the

dges of the synthetic image are changed within the result pro-

essed by minimum filter, but which can be well preserved by

pen operation. In Fig. 5 , the minimum filter has dilated the ob-

ects nearby, and the thickness of haze around the dark wire was

nderestimated. In contrast to this, the hazy layer estimated by the

roposed boundary constraint and morphological open filter has a

ore consistent profile with the input image and the edges of esti-

ated transmission map are well preserved. As a result, the haze is

ell removed between the neighbouring regions of different views

i.e., distant view and close view). For simplicity, this improved

ransmission estimation method is called open dark channel model

ODCM). 

As stated in Section 2.1 , t (x) is generally a piecewise smooth

unction and it is imperative to smooth t by an edge preserv-

ng filter. In the past, guided filter ( He et al., 2013 ), derived un-

er the assumption of linear relation between the filtered image

nd the guide image, can be effectively utilized for preserving the

dges. However, such filter often limits its power in smoothness.

o ensure this constraint, the domain transform filter ( Gastal and

liveira, 2011 ), embedded with edge-aware kernels and favored

or its fast implementation, is further applied for transmission

moothing. 

By examining the Eqs. (1) and (10) , it is imperative to search

n appropriate atmospheric light A for evaluating transmission t

nd achieving haze removal. As suggested in work ( He et al., 2011 ),

he brightest pixel value in the 0.1% pixels with the largest dark
hannel values is taken as atmospheric light A . However, this se-

ection only considers a single pixel, and it may be affected by ap-

arent noise. In the low frequency part, we select to pick the top

.1 percent brightest pixels in the open dark channel values and

ake the mean of these values as the global atmospheric light A ,

eaturing on robustness to the noise. With well estimated global

tmospheric light A and transmission function t , the scene radi-

nce J can be well recovered by Eq. (2) . 

.2. Noise removal and texture detail enhancement 

Remarkably, most of the current dehazing approaches often

uffer from the significant noise and cannot remove them syn-

hronously. Fortunately, our proposed approach selects to decom-

ose the hazy image into low and high frequency parts, whereby

he noise (e.g., Gaussian noise) is almost left in the high frequency

arts. Benefit much from this separation, such noise can be ef-

ectively removed by adding soft-thresholding operation S τ at the

igh frequency parts directly ( Donoho, 1995 ): 

 τ (x) = sign (x) · (| x | − τ ) (12)

here τ is the threshold value and it is usually estimated by the

edian of the first level decompositions. 

Since the low-frequency band and high-frequency bands are

orrelatively obtained by wavelet decomposition, the coefficients of

ifferent parts are closely related. Under such circumstances, if we

erform a wavelet reconstruction by selecting the recovered low-

requency part and unchanged high-frequency parts, the recovered

erformance would be quite unnatural due to the disturbed coef-

cient relationships. To resist this attack, it is reasonable to cor-

elate the coefficients of low-frequency part and high-frequency

arts adaptively. To this end, we heuristically utilize the estimated

ransmission value in ODCM to maintain the coefficient relation-

hips and simultaneously enhance the texture details in the high

requency parts efficiently. 

Given the image degradation equation I(x) = J(x) t(x) + A (1 −
(x)) , it is imperative to find the reasons for the texture degrada-

ion. In computer vision community, image textures generally char-

cterize the details of the object appearance, which can be visu-

lly described by various oriented gradients within the image. That

s, the oriented gradient cues contain many texture features, and

uch gradients can be further considered as the sources of high

requency components in frequency domain. Since A is the global

tmospheric light, by taking the gradients of Eq. (1) , the following

quations are obtained: 

I(x) = ∇ ( J(x) t(x) ) + ∇ ( A (1 − t(x)) ) 

= ∇J(x) · t(x) + ∇ t (x) · ( J (x) − A )t (13) 

As indicated in work ( Fattal, 2014 ), it is to be noted that the

ransmission t (x) is a piecewise smooth function, and its value in

ost image patches does not vary from its average by more than

.5%. Therefore, the transmission t (x) can be generally considered

s a local constant in a very small patch, and the value of its gra-

ient is almost close to zero. Accordingly, Eq. (13) can be further

elaxed to its equivalent form: 

 I �(x) = t � · ∇ J �(x) (14)

ere � is a local path with small size. Since transmission t is in

he range [0, 1], thus ∇I has a smaller magnitude than ∇J . As a re-

ult, the visibility is reduced and the object textures are degraded.

ote that, Eq. (14) implies that the high frequency parts of hazy

mage are degraded due to the multiplication t . Benefit much from

avelet decomposition, the high frequency elements, i.e., horizon-

al, vertical and diagonal details can be also regarded as horizontal,
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Fig. 6. The multi-scale correlated wavelet coefficients for adaptive high frequency texture enhancements. 

Fig. 7. The image dehazing performances obtained by different decomposition levels, in which level-0 means no decomposition. 
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1 From http://www.cs.huji.ac.il/ ∼raananf/projects/dehaze _ cl/ . 
vertical and diagonal gradients. Referring to Eq. (14) , it can be eas-

ily inferred: 

∇I � = { ∂ x I �, ∂ y I �, ∂ y ∂ x I �} = t � · { ∂ x J �, ∂ y J �, ∂ y ∂ x J �} (15)

{ 

∂ x I � = t � · ∂ x J � horizontal 
∂ y I � = t � · ∂ y J � vertical 

∂ y ∂ x I � = t � · ∂ y ∂ x J � diagonal . 
(16)

This local linear model enables us to enhance the texture de-

tails of the high frequency, provided that the transmission t of

the input image is obtained in advance. Fortunately, the transmis-

sion t can be well estimated through the low frequency compo-

nents. With the above gradients, we can correlate the wavelet co-

efficients between the recovered low frequency part and high fre-

quency part adaptively. Typical example is shown in Fig. 6 , it can

be found that the texture details are enhanced apparently within

the high frequency parts. More importantly, the coefficient rela-

tionships between the high frequency parts and the recovered low

frequency part almost remain unchanged, thereby the recovered

scenes would be natural and clear enough. 

In a theoretical way, the more level we split, the more de-

tails we can manipulate to achieve the better results. Evidently,

the more decomposition would lead to multiple transmission es-

timation, which is time-consuming. For computationally tractable

and transmission smoothness, we employ the bilinear interpola-

tion technique to obtain transmission at the previous decomposi-

tion. The dehazing results obtained by different decom positions are

shown Fig. 7 , it can be observed that the two level decomposition

has achieved a similar result as the three level decomposition, and
he recovered sky region is more nature than the results with no

ecomposition. Remarkably, the transmission estimated by upsam-

ling technique is not accurate enough with the texture edges. As

 result, the more level we split, the less information is left in low

requency part. Consequently, the transmission may not be accu-

ately estimated for efficient haze removal. To balance the trade-off

etween the decomposition level and dehazing performance, the

ecomposition level is generally set at 2 in all the experiments. 

.3. Wavelet reconstruction 

After the haze removal in low frequency part, noise removal

nd texture detail enhancement in the high frequency parts, the

aze-free image can be directly obtained by the wavelet recon-

truction. Since the scene radiance is usually not as bright as the

tmospheric light, the image after haze removal often looks a bit

im. To tackle this problem, we refer to the works ( Berman et al.,

016; He et al., 2013 ) and also increase the exposure of J for better

isual quality. 

. Experimental results 

In the experiments, the public available natural hazy im-

ges 1 were selected for testing, and the fast wavelet transform

 Rioul and Duhamel, 1992 ) with “sym4” filter was chosen to

ecompose the image. Meanwhile, the patch size was fixed at

http://www.cs.huji.ac.il/~raananf/projects/dehaze_cl/
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Fig. 8. Representative image dehazing results (i.e., Swans, Pumpkins and Beijing images) obtained by different approaches. 
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 × 8 in all the testing examples. To evaluate the dehazing perfor-

ance, nine competing approaches, simply denoted as Tan (2008) ,

attal (2008) , Kratz and Nishino (2009) , Tarel and Hautiere (2009) ,

ibson and Nguyen (2013) , He et al. (2011) , Meng et al. (2013) ,

hu et al. (2015) , and Berman et al. (2016) were selected for com-

arison. Meanwhile, we chose the other suggested parameters as

he authors have given in all the experiments. 

.1. Dehazing performance 

Typical dehazing performances were shown in Figs. 8 and

 , respectively. Although the visibility maximizing scheme in

an (2008) was able to augment the image contrast and greatly

mprove the scene visuality, the color appearance within the recov-

red scenes were often over saturated (e.g., swans), and some halo

rtifacts usually appeared around the recovered edges. The main

eason lies that the visibility is maximized only when the inten-

ities of some pixels are below zero, and this assumption is not

hysically valid in practice. By exploiting the priors of natural im-

ges and depth statistics, Kratz and Nishino (2009) adopted a fac-

orial MRF to model a foggy image and the aesthetically pleasing

esults can be obtained. However, this method often tended to un-

erestimate the transmission and thus induced some halo artifacts

e.g., trees). Fattal (2008) selected to estimate the transmission by

sing sufficient color information and variance, through which the

aze effect can be significantly reduced. Unfortunately, if the haze

s very dense, the color information will be very faint and therefore

he transmission would be wrongly estimated for scene enhance-

ent. Tarel and Hautiere (2009) and Gibson and Nguyen (2013) es-

imated the atmospheric veil by respectively applying a fast me-

ian filter and an adaptive wiener filter to the minimum com-

onents of an observed image, which incorporate an advantage

f linear complexity. Nevertheless, the dehazing results obtained

y these two approaches were not quite visually compelling, and

ome details are lost in the dark region due to the unremoved

aze. Similarly, Meng et al. (2013) also has resulted in a bit poor
ehazing performance due to the inaccurate transmission estima-

ion along the texture edges. 

The recent image dehazing works, He et al. (2011) ,

hu et al. (2015) and Berman et al. (2016) were popularly

nown for their robustness. After in-depth study of these ap-

roaches, we found that the patch-based DCP approach ( He et al.,

011 ) often dilated the nearer objects and produced unpleasing

esults. Meanwhile, the matting Laplacian or guide filter utilized to

egularize the transmission was known to achieve less smoothing

nd often transferred some texture details into the transmission

ap. Accordingly, this type of approach has induced an overall

eduction of contrast at the distant regions, (e.g., Mountain and

illside). To remove the haze, Zhu et al. (2015) created a linear

odel and utilized the color attenuation prior to model the

cene depth. However, there still existed a small proportion of

aze in the corresponding dehazing results (e.g., Mountain). The

ain reason can be attributed to the difficult parameter learning

rom training example pairs. Note that, Berman et al. (2016) has

roduced quite visually compelling results, but which may also

esult in a bit poor performance at some local regions (e.g., houses

n the Florence image and island in the Manhattan). By contrast,

ur proposed approach almost yielded very comparative and even

etter results than these competing techniques. It is to be noted

hat the proposed approach not only has significantly improved

he visibility of the distant views, but also has enhanced the

exture details and simultaneously maintained the original color

ppearances. In addition, the halo artifacts within our recovered

esults were quite small. 

.2. Quantitative comparison 

In the past, most of existing dehazing algorithms often select

o subjectively evaluate the dehazing performance based on hu-

an visual system, because objective quality assessment is a very

hallenging problem since a perfect quality dehazed image is not

vailable as a reference. In general, haze often reduces the visible
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Fig. 9. Representative image dehazing results (i.e., Florence, Mountain, Manhattan and Hillside images) obtained by different approaches. 
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edges and texture information in the scene. Therefore, the restora-

tion can be heuristically measured by the numbers of visible edges

and texture details. Similar to the work ( Tarel and Hautiere, 2009 ),

three well-known quantitative metrics, visible edge ratio e , gradi-

ent ratio r̄ and saturated pixel ratio σ , are selected for evaluat-

ing the dehazing performance ( Ancuti and Ancuti, 2013; Hautiere

et al., 2008; Xu et al., 2014 ). The interested readers may refer to

the work ( Hautiere et al., 2008 ) for their mathematical definitions.

Physically, the first metric indicates that the edges are not visible

in the original image but appear in the restored image, the middle

metric measures the degree of average visibility enhancement, and

the last metric provides the percentage of pixels which become

completely black or completely white after restoration. In practice,

the higher e and r̄ often indicate more texture details and thus

produce a better restoration result, while the smaller σ represents

the less information loss. 

In particular, we referred to works ( Berman et al., 2016; He

et al., 2013 ) and increased the exposure for all the restored ex-

amples. Accordingly, the quantitative values obtained by three

very competing works ( Berman et al., 2016; He et al., 2011; Zhu

et al., 2015 ) and our method were shown in Table 1 . It can be

found that the performances obtained by He et al. (2011) and

Berman et al. (2016) have resulted some negative e values. That

is, some visible edges obtained by these two methods were lost in
c  
he restored performances (e.g., marked by red rectangles in the

lorence and Manhattan). Although Berman et al. (2016) has gen-

rated a bit larger r̄ values in Swan and Manhattan images, the

olor appearances of these two examples were a bit over satu-

ated, e.g., some pixels were truncated to black or white. Similarly,

hu et al. (2015) has almost yielded the lowest σ values, but its

erformance has resulted in a small r̄ value due to the incomplete

aze removal. Comparatively speaking, our proposed algorithm al-

ost has achieved the best restoration performances in terms of

he larger { e, ̄r } values and the smaller σ values. For instance, the

alues of r̄ were larger than 2 when tested on Swans, Pumpkins

nd Hillside images. That is, our proposed approach was able to

reserve more texture details. Remarkably, the values of σ were

lmost close to zero. Therefore, our proposed approach was able to

ecover the vivid appearance without sacrificing the color fidelity

isually. 

.3. Dehazing and denoising 

As discussed in Section 2 , most of the current dehazing ap-

roaches may not handle the noise problem synchronously. To vi-

ually show the noise impact, the salt and pepper noise pattern

as first selected for better dehazing illustration. Note that, the

alt and pepper noise, sparsely occurring white and black pixels,

an be well removed by some pre-processing operations such as
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Table 1 

Quantitative comparisons with different measurements ( e , r̄ , σ and τ .). 

He et al. (2011) Zhu et al. (2015) Berman et al. (2016) our 

e r̄ σ τ ( s ) e r̄ σ τ ( s ) e r̄ σ τ ( s ) e r̄ σ τ ( s ) 

Swans 0.411 1.175 0.002 34.437 0.307 1.294 0.0 0 0 0.920 0.638 2.933 0.020 1.234 0.597 2.299 0.001 0.726 

Pumpkins 0.281 1.619 0.0 0 0 34.603 0.168 1.122 0.0 0 0 0.979 0.157 1.946 0.0 0 0 1.232 0.289 2.217 0.0 0 0 0.732 

Beijing 0.040 1.454 0.010 34.516 0.123 1.132 0.0 0 0 0.945 0.088 1.873 0.110 1.291 0.012 1.881 0.008 0.696 

Florence -0.027 1.411 0.008 116.147 0.033 1.050 0.0 0 0 2.827 0.026 1.377 0.008 3.667 0.0 0 0 1.987 0.0 0 0 1.396 

Mountain 0.151 1.180 0.0 0 0 29.687 0.102 1.120 0.0 0 0 0.816 0.038 1.565 0.013 1.106 0.126 1.573 0.0 0 0 0.651 

Manhattan 0.045 1.398 0.0 0 0 65.864 0.063 1.112 0.0 0 0 1.604 -0.056 1.805 0.035 2.236 0.048 1.445 0.0 0 0 0.949 

Hillside 0.689 2.449 0.0 0 0 58.314 0.535 1.488 0.0 0 0 1.518 0.526 2.280 0.0 0 0 2.065 0.572 2.583 0.0 0 0 0.927 

Fig. 10. Image dehazing with salt and pepper noise (density = 0.005). From left to right of top row: input image, dark channel, transmission and dehazing results obtained 

by He et al. (2011) . From left to right of bottom row: wavelet decomposition with ‘sym4’ filter, open dark channel, transmission and dehazing result obtained by the proposed 

approach. 
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edian filter and morphological filter. As shown in Fig. 10 , the

CP method was found to be very sensitive to the apparent noise

nd the transmission of this prior would be underestimated when

here exist obvious noise. The main reason lies that a local patch

ith significant noise shall make the whole patch darker such that

he transmission would be underestimated. Consequently, such un-

erestimated transmission would lead to a dehazing failure. By

ontrast, our proposed approach is insensitive to the significant

oise and the estimated transmission map is accurate enough for

fficient haze removal. As a result, the haze impact can be signif-

cantly reduced by our proposed approach. The main reasons are

wo-fold: 1) The salt and pepper noise can be gradually weaken

y the wavelet decomposition such that the remaining noise in

ow frequency shall not significantly affect transmission estimation.

) Our proposed ODCM method incorporating the morphological

pen filter is able to well constrain the noise such that transmis-

ion can be appropriately estimated for efficient haze removal. 

Another representative dehazing and denoising results were

hown in Fig. 11 , it can be observed that He et al. (2011) has

roduced a poor dehazing performance when the haze degraded

mage contains the Gaussian noise. Consequently, the distant re-

ions of the bottom dehazing result were ambiguous. Similarly,

hu et al. (2015) also failed to remove the haze impact when there

xisted Gaussian noises and the dehazing result almost shared

he similar appearance with the original example. Specifically,

erman et al. (2016) was able to remove the haze to some degree,

ut which would significantly amplify the noise in remote scenes.

eanwhile, we have selected the professional Adobe Lightroom

t  
017 software to achieve image dehazing and denoising. By using

his software, it can be observed that the significant noise in the

istant view cannot be directly removed during the dehazing pro-

ess. Although the noise can be further reduced by some profes-

ional operations, the texture details cannot be well preserved. For-

unately, our proposed approach selected to decompose the hazy

mage into low frequency part and high frequency parts, whereby

he transmission can be well estimated in the low frequency part

nd the Gaussian noise was almost left in the high frequency parts.

enefit much from wavelet decomposition, the haze can be well

emoved at the low frequency part, while the texture details were

nhanced and Gaussian noise was concurrently reduced in the high

requency parts adaptively. Therefore, as shown in Fig. 11 , the pro-

osed approach not only can significantly increase the perceptual

isibility of haze scene, but also could preserve more texture de-

ails and reduce the noise effect as well. The extensive experiments

ave shown its outstanding performance. 

.4. Computation time 

In the experiments, all the testings were conducted on a desk-

op computer with an Intel® Core TM i5-3470 GHz processor and

GB memory, and the coding language was Matlab. Under the

ame coding condition, we selected to compare the proposed ap-

roach with three very competing approaches, i.e., He et al. (2011) ,

hu et al. (2015) and Berman et al. (2016) . Since the proposed ap-

roach employs the wavelet decomposition to reduce the impact of

he haze and noise in the degraded scenes, the computational load
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Fig. 11. Dehazing and denoising obtained by different approaches. From left to right of top row: input hazy image with heavy haze regions, Adobe Lightroom 2017 dehazing 

result, Adobe Lightroom 2017 dehazing followed by denoising, our result; From left to right of bottom row: input images with zero-mean Gaussian noise ( σ = 0 . 02 ), dehazing 

obtained He et al. (2011) , Zhu et al. (2015) , Berman et al. (2016) and our proposed approach, respectively. 
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would be much more higher than others. Fortunately, the process-

ing time obtained by the proposed approach was really acceptable.

As shown in Table 1 , the computation times τ ( s ) obtained by the

proposed approach were significantly less than the results gener-

ated by He et al. (2011) , which generally required 30–40 s to pro-

cess a size of 600 × 400 image. The main reason lies that the soft

matting operation in work ( He et al., 2011 ) involves a lot of it-

erations to refine the transmission map. By contrast, the domain

transform filter, favored for its fast implementation, is applied to

speed up the dehazing process within our proposed approach. 

Further, the computation times obtained by the pro-

posed approach were also less than the results produced by

Zhu et al. (2015) and Berman et al. (2016) . In essence, these two

approaches chose to estimate the transmission maps through

the whole image region, and the computation times would grow

linearly with the image size by using the guided filtering. In

contrast to this, our proposed approach employed the fast wavelet

transform to decompose the haze image into several sub-images,

and the transmission map was estimated and refined through

the low-frequency sub-image, whose scale size was relatively

small. For instance, if the decomposition level is 2, the area of

low-frequency sub-image is only one-sixteenth of the original

image. Accordingly, the main computation time attributed to the

transmission map estimation of sub-image would be much smaller

than the traditional ways. Although our proposed approach re-

quires an additional decomposition phase, the implementation of

fast wavelet transform was very quick and the whole precessing

time was comparable to these competing approaches. Therefore,

the proposed image dehazing and denoising method would be

well suitable for recovering the scene contents in real-world im-

ages, and experimental results really have shown its outstanding

performance. 

5. Conclusions 

In this paper, we have presented an efficient multi-scale cor-

related wavelet approach for image dehazing and denoising. Un-

der the multi-scale wavelet framework, the haze is typically dis-

tributed in the low frequency spectrum. Accordingly, an open dark

channel model is presented to achieve low frequency haze re-

moval, and an effective scheme is derived to remove the noise and

enhance the texture detail adaptively in the high frequency parts.

Consequently, the perceptual visibility of the haze degraded scenes

can be significantly increased with visually pleasing texture infor-

mation and faithful color appearances. Meanwhile, the proposed
pproach has demonstrated its efficiency in removing the haze in-

uence and noise impact simultaneously. Benefit much from the

avelet decomposition, our proposed dehazing framework offers

 flexible framework to combine with other effective priors or

onstraints to the scene enhancement. As an efficient image pre-

rocessing method, it is expected that our proposed dehazing and

enoising algorithm would be well utilized for various vision de-

raded applications. 
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