
On Rival Penalization Controlled Competitive
Learning for Clustering with Automatic

Cluster Number Selection

Yiu-ming Cheung

Abstract—The existing Rival Penalized Competitive Learning (RPCL) algorithm

and its variants have provided an attractive way to perform data clustering without

knowing the exact number of clusters. However, their performance is sensitive to

the preselection of the rival delearning rate. In this paper, we further investigate

the RPCL and present a mechanism to control the strength of rival penalization

dynamically. Consequently, we propose the Rival Penalization Controlled

Competitive Learning (RPCCL) algorithm and its stochastic version. In each of

these algorithms, the selection of the delearning rate is circumvented using a novel

technique. We compare the performance of RPCCL to RPCL in Gaussian mixture

clustering and color image segmentation, respectively. The experiments have

produced the promising results.

Index Terms—Rival Penalization Controlled Competitive Learning, stochastic

RPCL, clustering, cluster number.

�

1 INTRODUCTION

COMPETITIVE learning has been widely applied to a variety of
applications such as vector quantization [9], [14], data visualization
[8], [13], and particularly to unsupervised clustering [1], [6], [21],
[24]. In the literature, k-means [15] is a popular competitive
learning algorithm, which trains k seed points (also called units
hereinafter), denoted as m1;m2; . . . ;mk, in a way that they
converge to the data cluster centers by minimizing the mean-
square-error (MSE) function. In general, k-means algorithm has at
least two major drawbacks: 1) It suffers from the dead-unit
problem. If the initial positions of some units are far away from the
inputs (also called data points interchangeably) in Euclidean space
compared to the other units, these distant units will have no
opportunity to be trained and, therefore, immediately become
dead units. 2) If the number of clusters is misspecified, i.e., k is not
equal to the true cluster number k�, the performance of k-means
algorithm deteriorates rapidly. Eventually, some of the seed points
are not located at the centers of the corresponding clusters. Instead,
they are either at some boundary points between different clusters
or at points biased from some cluster centers [24].

To solve the dead-unit problem, the heuristic Frequency
Sensitive Competitive Learning (FSCL) algorithm [1] is an efficient
method that circumvents the dead units by adding a relative
winning frequency term into the similarity measurement between
an input and the seed points. The larger the winning frequency of a
seed point, the more it is penalized. Eventually, all units have the
opportunity to be updated in the training process. Nevertheless,
the FSCL suffers from the same second problem as k-means. That
is, the performance of FSCL deteriorates rapidly if k is not well-
specified. In the past, some methods have been proposed for
cluster number selection. For instance, there have been some
statistics, e.g., AIC [2], [3], CAIC [4] and SIC [18], proposed for
model selection by formulating the cluster number selection as the
choice of component number in a finite mixture model. However,
these statistics may overestimate or underestimate the cluster

number due to the difficulty of choosing an appropriate penalty
function. Another example is the Probabilistic Validation (PV)
approach [11] that performs clustering analysis by projecting the
high-dimension inputs into one dimension via maximizing the
projection indices. It has been shown that the PV can determine the
correct number of clusters with a high probability. However, this
algorithm is only applicable to linear-separable problems with few
clusters. Otherwise, its two-level clustering validation procedure
will become rather time-consuming, and the probability of finding
the correct number of clusters decreases. Recently, Lange et al. [12]
has proposed a Stability Measure to estimate the correct number of
clusters. The empirical studies in [12] have shown that this
measure outperforms the existing Gap Statistic [19], Prediction
Strength [5], [20] and Clest [7]. Also, Xu [22], [23] has proposed a
statistic from the Ying-Yang Machine to select the number of
clusters in a large sample set. Later, Guo et al. [10] further studied
this statistic in a small set of samples. In general, the selection
procedure of this statistic is as laborious as the Stability Measure
because they both have to perform clustering repeatedly for each
possible value of k in a preassigned range.

In contrast, an alternative promising way is to develop some
robust algorithms that perform clustering without knowing the
exact cluster number. In the past, the typical incremental clustering
gradually increases the number k of clusters under the control of a
threshold value, which is unfortunately hard to be decided.
Recently, Olman et al. [17] has presented a clustering algorithm
by formulating a cluster identification problem as searching for
substrings with special properties in a linear sequence. They have
developed a method for assessing the statistical significance of
each identified cluster in a noisy background, through which some
accidental data clusters can be ruled out, i.e., the number of
clusters can be determined. The performance of the proposed
algorithm has been successfully demonstrated in binding site
identification. Nevertheless, it is still desired to further investigate
this heuristic cluster assessing method on synthetic and real-life
data. In the literature, another attractive clustering algorithm is the
RPCL [24] and its variants. The basic idea in each of them is that,
for each input, not only the winner of the seed points is updated to
adapt to the input, but also its nearest rival (i.e., the second winner)
is delearned by a smaller learning rate (also called delearning rate
hereinafter). Empirical studies have shown that the RPCL can
automatically select the correct cluster number by gradually
driving redundant seed points far away from the input dense
regions. However, some experiments have also found that the
performance of RPCL is sensitive to the delearning rate. In general,
the RPCL will fail to perform correct clustering if the delearning
rate is not well preassigned. To our best knowledge, it is definitely
a nontrivial task to select this rate in advance.

In this paper, we will concentrate on studying the RPCL
algorithm and propose a novel technique to circumvent the
selection of the delearning rate. We have noticed that the RPCL
[24] adaptively performs the rival penalization for each input
without considering the distance from the winning unit to the
rival. In fact, the rival should be more penalized if its distance to
the winner is closer than the one between the winner and the
input. This idea is analogous to the social scenario in our daily life.
For example, the competition between two candidates called A
and B (we assume that A is the final winner and B is therefore the
rival) in an election campaign will become more intense if their
public opinion polls are closer. Otherwise, A will be almost sure to
win the election with little attack against (i.e., little penalizing) B
during the election campaign. Based on this idea, we therefore
present a mechanism, in which the rival-penalized strength is
dynamically adjusted based on the relative distance of the winner
to the rival and the current input, respectively. We have associated
this mechanism with the delearning rule of the RPCL, through
which a new improved algorithm named Rival Penalization
Controlled Competitive Learning (RPCCL) is proposed. This new
algorithm always sets the delearning rate at the same value as the
learning rate. Hence, the selection of the delearning rate is novelly

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005 1583

. The author is with the Department of Computer Science, Hong Kong
Baptist University, Rm. 709, 7/F, Sir Run Run Shaw Building, Kowloon,
Hong Kong, P.R. China. E-mail: ymc@comp.hkbu.edu.hk.

Manuscript received 18 June 2004; revised 14 Mar. 2005; accepted 7 July
2005; published online 19 Sept. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0177-0604.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

circumvented. In contrast, such a setting will always make the
RPCL fail as pointed out in [24]. In the RPCCL, a rival seed point is
always penalized with the delearning rule. Actually, we can also
perform the rival penalization in a probabilistic way. Subse-
quently, we obtain a variant named Stochastic RPCL (S-RPCL)
algorithm, which penalizes the rivals by using the same rule as the
RPCL, but the penalization is performed stochastically. In effect,
this learning procedure is equivalent to the one in the RPCCL.
Hence, both of the RPCCL and S-RPCL will finally lead to the
same clustering result. We compare the performance of RPCCL to
the RPCL in Gaussian mixture clustering and color image
segmentation, respectively. The experiments have shown that the
RPCCL can smoothly work in all cases we have tried so far, but
the RPCL may not. Furthermore, we find that the RPCCL often
gives correct clustering results much faster than the RPCL because
the strength of rival penalization in the former is stronger on
average.

The remainder of this paper is organized as follows: Section 2
overviews the RPCL algorithm in data clustering. Section 3
elaborates the RPCCL in detail, including the embedded rival-
penalization controlling mechanism and its stochastic implemen-
tation. We empirically show the performance of RPCCL in
comparison with the RPCL in Section 4. Finally, we draw a
conclusion in Section 5.

2 OVERVIEW OF RPCL ALGORITHM IN DATA

CLUSTERING

Suppose N inputs, x1;x2; . . . ;xN, come from k� unknown clusters.
The RPCL randomly initializes k seed points: m1;m2; . . . ;mk, and
adaptively updates them so that those xts can be correctly
classified based on the indicator function

gðjjxtÞ ¼ 1; if j ¼ c ¼ argmin1�i�k kxt �mik2
0; otherwise:

�
ð1Þ

That is, xt is classified into the jth cluster if gðjjxtÞ ¼ 1. The basic
idea of RPCL [24] to update the seed points is that for each input,
not only the winning seed point mc (i.e., gðcjxtÞ ¼ 1) is modified to
adapt to the input, but also its the nearest rival is delearned by a
smaller learning rate. Specifically, the algorithm is:

Step A.1: Randomly take a sample xt from the data set
D ¼ fxtgNt¼1, and for j ¼ 1; 2; . . . ; k, let

IðjjxtÞ ¼
1; if j ¼ c with c ¼ argmini �ifkxt �mik2
�1; if j ¼ r with r ¼ argmini 6¼c �ikxt �mik2
0; otherwise

8<
: ð2Þ

with

�i ¼
niPk
u¼1 nu

; ð3Þ

where ni is the cumulative number of the winning occurrences of
mi in the past.

Step A.2: Update nc, the winner mc, and its nearest rival mr by

nnewc ¼ noldc þ 1

mnew
� ¼ mold

� þ�m� ; � ¼ c; r
ð4Þ

with

�mc ¼ �cðxt �mcÞ
�mr ¼ ��rðxt �mrÞ;

ð5Þ

while the other seed points are unchanged. In (5), �c is a small
positive learning rate, whereas �r is called the delearning rate, whose
value is generally much smaller than �c. The above two steps iterate
for each input until a stop criterion is satisfied, e.g., the iteration
number reaches the preassigned maximum value, or absolute

difference between the consecutive classification errors is smaller
than a preassigned threshold value.

As shown in [24], the RPCL can automatically determine the
number of clusters by driving extra seed points far away from the
input dense regions as long as k � k�. However, some empirical
studies have also found that the performance of RPCL is sensitive
to the selection of the delearning rate �r. If �r is too small, the
RPCL may not have enough force to push the redundant seed
points away from the input regions. On the other hand, if �r is too
large, the RPCL will push almost all seed points far away from the
inputs because of too strong penalization strength. Roughly
speaking, an appropriate value of �r not only varies with the
different clustering problems, but is also related to the initial
positions of the seed points. Such a selection is definitely a
nontrivial task. In the past, �r is mostly selected by trial and error,
which thereby limits the great potential of RPCL in real
applications.

In the following, we will present the RPCCL that utilizes a
mechanism to control the rival-penalized strength. Consequently,
it can circumvent the selection of �r by always setting �r at the
same value as �c.

3 RPCCL ALGORITHM AND ITS STOCHASTIC

IMPLEMENTATION

The RPCCL algorithm utilizes a novel mechanism to control the
rival penalization. The idea of this mechanism is that the rival
should be fully penalized if the winner suffers from the severe
competition from the rival; otherwise, the penalization strength
should be proportional to the degree of competition level. To
realize this idea, given an input xt, we define the competition to be
severe if the distance of the winner to the rival is closer than its
distance to xt. Furthermore, we define the full-penalization
strength (i.e., the maximum rival-penalized strength) of the rival
to be �c upon the fact that �r is generally smaller than �c in the
RPCL. Subsequently, we give out this penalization control
mechanism by �cpðxt;mc;mrÞ with

pðxt;mc;mrÞ ¼
min½fðmr;mcÞ; fðxt;mcÞ�

fðmr;mcÞ
; ð6Þ

where f is a certain distance measuring function, e.g., Euclidean
distance, or more general Mahalanobis distance. Since the
numerator of (6) is always smaller than or equal to the
denominator, the value of pðxt;mc;mrÞ must be between 0 and
1. It can be seen that, as illustrated in Fig. 1, the rival will be fully
penalized with the rate �c as fðmr;mcÞ � fðxt;mcÞ. Otherwise, the
rival penalization is gradually attenuated when the distance
between the rival and the winner increases. Hereinafter, we will

1584 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

Fig. 1. The rival penalization controlling mechanism in the RPCCL algorithm. It can

be seen that: (a) When fðmr;mcÞ > fðxt;mcÞ, the rival penalization gradually

decreases as the distance between the rival and the winner increases. (b) When

fðmr;mcÞ � fðxt;mcÞ, a full penalization is applied to the rival seed point mr, i.e.,

the rival-penalized strength reaches its maximum value �c.

measure the distance between two points by using the Euclidean
distance only, i.e., (6) can be specified as:

pðxt;mc;mrÞ ¼
minðkmr �mck; kxt �mckÞ

kmr �mck
: ð7Þ

By embedding the control mechanism into the rival’s update,
we then obtain the RPCCL algorithm as follows:

Step B.1: Randomly take an input xt from the data set D,
calculate IðjjxtÞ by (2).

Step B.2: Update nc, the winner mc and the rival mr only by (4),
but (5) becomes

�mc ¼ �cðxt �mcÞ
�mr ¼ ��cpðxt;mc;mrÞðxt �mrÞ

¼ ��c
minðkmr �mck; kxt �mckÞ

kmr �mck
ðxt �mrÞ:

ð8Þ

These two steps iterate for each input until a stop criterion stated
previously is satisfied.

From (8), it can be seen that the rival will be fully penalized

with the rate �c as kmc �mrk � kmc � xtk. Otherwise, the rival

will be penalized with the strength �c
kmc�xtk
kmc�mrk , which is gradually

attenuated as kmc �mrk increases. On average, the rival-penalized

strength in (8) is no less than 0:25�c if there are two or more seed

points located in one cluster in which the data points uniformly

distributed. In contrast, such a large rival-penalized strength will

make the RPCL break down completely. Hence, �r in (5) must be

much smaller than 0:25�c. Consequently, the RPCCL generally

drives the redundant seed points far away from the clusters much

faster than the RPCL. In fact, if we further fix pðxt;mc;mrÞ at an
appropriate value smaller than 1, (8) is then equal to (5) with

�r ¼ �cpðxt;mc;mrÞ. That is, the RPCCL is actually a general-

ization of the RPCL.
Furthermore, we have noticed that pðxt;mc;mrÞ in (8) is always

between 0 and 1. It can therefore be regarded as the probability of
rival penalization. As a result, we can alternatively give out a
stochastic version of the RPCCL named Stochastic RPCL (S-RPCL)
which, in effect, is identical to the RPCCL. The detailed algorithm
is as follows:

Step C.1: Randomly take an input xt from the data set D,
calculate IðjjxtÞ by (2).

Step C.2: Update nc and mc by (4) and (8). Then, we generate a
uniformly-distributed random number � 2 ½0; 1�. Let

%ðxtÞ ¼
1; if � � pðxt;mc;mrÞ;
0; otherwise:

�
ð9Þ

We update the rival mr by

�mr ¼ ��c%ðxtÞðxt �mrÞ: ð10Þ

Step C.1 and Step C.2 iterate for each input until a stop

criterion is satisfied.
In (9), the value of %ðxtÞ is switched between 0 and 1, which

causes the rival penalization in (10) to be implemented discon-

tinuously. Actually, it can be seen that (10) is exactly equal to the

delearning rule of the RPCL in (5) with the delearning rate �r ¼ �c

if % ¼ 1. As pointed out in [24], we have known that the RPCL will

completely break down if �r ¼ �c. But, one interesting thing is that

the S-RPCL can work very well as long as the rival penalization

can be discontinuously implemented in a controlled way. As the

S-RPCL has the same clustering performance as the RPCCL, we

will demonstrate the performance of RPCCL in comparison with

the RPCL only in the next section.

4 EXPERIMENTAL RESULTS

We investigated the performance of RPCCL on Gaussian mixture

clustering and color image segmentation in comparison with the

RPCL. In all the experiments, we set the learning rate �c at 0:001,

and �r at 0:0001 by default in implementing the RPCL.

4.1 RPCCL and RPCL in Gaussian Mixture Clustering

4.1.1 Experiment 1

We used the 1; 000 synthetic data points from a mixture of three

Gaussian densities:

pðxÞ ¼ 0:3G xj
1

1

� �
;

0:1; 0

0; 0:1

� �� �

þ 0:4G xj
1

5

� �
;

0:1; 0

0; 0:1

� �� �

þ 0:3G xj
5

5

� �
;

0:1; 0

0; 0:1

� �� �
;

ð11Þ

where Gðxjm;��Þ denotes the probability density function of the

variable x with the mean m and the covariance matrix ��. As

shown in Fig. 2a, the data form three well-separated clusters. We

randomly located six seed points m1;m2; . . . ;m6 at:

m1 ¼
2:2580

1:9849

� �
; m2 ¼

1:4659

5:1359

� �
; m3 ¼

0:6893

5:0331

� �

m4 ¼
5:2045

5:1298

� �
; m5 ¼

1:9193

5:4489

� �
; m6 ¼

5:5869

5:1937

� �
:

ð12Þ

After 100 epochs, i.e., repeatedly scanning all available data

points 100 times, the six seed points learned by the RPCCL had

been converged to:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005 1585

Fig. 2. The positions of six seed points marked by “*” in the input space at Experiment 1 of Section 4.1.1: (a) the initial positions, and (b) the final positions obtained via the

RPCCL.

m1 ¼
1:0131

0:9806

� �
; m2 ¼

0:9845

4:9823

� �
; m3 ¼

�3:5557

5:4466

� �

m4 ¼
5:0180

5:0043

� �
; m5 ¼

5:7498

25:0371

� �
; m6 ¼

11:4483

7:2208

� �
:

ð13Þ

As shown in Fig. 2b, the RPCCL has successfully put three seed

points: m1, m2, and m4 into the appropriate positions of three

clusters, meanwhile driving the other three extra seed points: m3,

m5, and m6 far away from the input dense regions. In contrast,

after 100 epochs, the RPCL just led the six seed points to:

m1 ¼
1:0131

0:9806

� �
; m2 ¼

0:9862

5:1899

� �
; m3 ¼

�0:2110

7:2922

� �

m4 ¼
4:7637

5:0947

� �
; m5 ¼

8:9795

42:2057

� �
; m6 ¼

5:3665

4:9695

� �
:

ð14Þ

As shown in Fig. 3a, the RPCL pushed only two seed points m3

and m5 far away from the input regions. We then further learned

the seed points up to 200 epochs. It was found that the RPCL

gradually drove the three extra points m3, m5, and m6 to

m3 ¼
�3:0326

13:2891

� �
m5 ¼

14:4600

70:6014

� �
; m6 ¼

10:4714

5:2240

� �
;

ð15Þ

which were far away from the input dense regions as shown in

Fig. 3b, while the other three seed points located at the correct

positions as follows:

m1 ¼
1:0167

0:9321

� �
m2 ¼

0:9752

5:3068

� �
; m4 ¼

5:4022

5:0054

� �
: ð16Þ

It can be seen that the RPCL can finally work well in this case,

but it needs more computing costs in comparison with the RPCCL.

4.1.2 Experiment 2

We further investigated the RPCCL and RPCL on the overlapping
data clusters as shown in Fig. 4a. After 100 epochs, we found that
the RPCCL had given out the correct results as shown in Fig. 4b,
but the RPCL could not work as shown in Fig. 4c even if we
increased the epoch number to 1; 000. Under the circumstances, we
further investigated the RPCL by adjusting �r along two
directions: from 0:0001 to 0:0009, and from 0:0001 to 0:00001,
respectively, with a constant step: 0:00001. Unfortunately, we
could not find out an appropriate �r in all cases we had tried so far
to make the RPCL work.

4.2 RPCCL and RPCL in Color Image Segmentation

Image segmentation is the process of segmenting an image into
different homogeneous regions, which is a critical step in image
analysis and pattern recognition. In the literature, a variety of
approaches have been proposed to deal with gray-scale images
such as edge-based, region-based, and pixel-based approaches.
Some of them can also be used in color images. In this paper, we
focus on pixel-based segmentation only for color image segmenta-
tion. We operate in the simple Red-Green-Blue (RGB) color space
model that represents each pixel in an image by the three-color
components. Assuming homogenous objects have similar colors,
we can therefore group pixels of similar colors into the same cluster
based on a certain distance measure over the three-dimensional
RGB color space. Eventually, given a set of image pixels, denoted as
D ¼ fxtgNt¼1, where xt ¼ ðxRt ; xGt ; xBt Þ

T is a 3� 1 vector representing
a color pixel in RGB space, color image segmentation based on
pixels can be then formulated as a three-dimensional data
clustering problem. In the following, we will perform color image
segmentation by using the RPCCL and RPCL, respectively.

4.2.1 Experiment 1

We used the House image with 128� 128 pixels to compare the
segmentation performance of the RPCCL and RPCL. The original
House image is shown in Fig. 5a. We randomly initialized 30 seed
points in the RGB color space. After the algorithm performance

1586 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

Fig. 3. The experimental results of the RPCL in Experiment 1 of Section 4.1.1. (a) The final positions of six seed points obtained via the RPCL with 100 epochs, where

only two seed points are pushed far away from the input dense regions; (b) The final positions obtained via the RPCL with 200 epochs, where all extra seed points have

been successfully driven away from the input regions.

Fig. 4. The positions of six seed points marked by “*” in the input space at Experiment 2 of Section 4.1.1: (a) The initial positions, (b) the final positions obtained via the

RPCCL, and (c) the final positions obtained via the RPCL.

converged, we found that the RPCL failed to drive out any seed

point from the input regions. This phenomenon shows again that

the RPCL performance is sensitive to the selection of the de-

learning rate. In contrast, the RPCCL had driven out 12 extra seed

points far away from the input regions. This implies that the

RPCCL utilizes a smaller set of seed points in the image

segmentation. Figs. 5b and 5c show a snapshot of the segmentation

results at Epoch 100 via these two algorithms, respectively. It can

be seen that the RPCL still retains the texture of the red wall, but

the RPCCL has successfully removed it. That is, the results from

the RPCCL are better than the RPCL.

4.2.2 Experiment 2

Similar to Experiment 1 of Section 4.2.1, we let the number of seed

points be 30, and used another Audience image with 128� 128

pixels to compare their segmentation performance. The original

Audience image is shown in Fig. 6a. After the algorithm

performance converged, we found that the RPCL had driven out

one seed point from the input regions, whereas the RPCCL had

driven out seven extra seed points far away from the data points.

Once again, the RPCCL utilized a smaller set of seed points in this

trial. A snapshot of the segmentation results via these two

algorithms at Epoch 50 is shown in Figs. 6b and 6c. It can be

seen that the sparse points in the audience hindbrain are still

retained in the result of RPCCL, but missed in the one of RPCL.

This implies that the RPCCL performance was slightly better than

the RPCL, although both of them led to the similar results.
Further, when adjusting the delearning rate of RPCL up to

0.0002, we found that the RPCL could finally drive out six extra

seed points away from the data points. This scenario shows again

that the performance of RPCL is sensitive to the value of the

delearning rate.

5 CONCLUSION

We have further investigated the RPCL with presenting a

mechanism to dynamically control the rival-penalized strength.

Consequently, we have proposed an improved algorithm named

rival penalized controlled competitive learning (RPCCL) and its

equivalent stochastic version. Both of them have novelly circum-

vented the difficult selection of the delearning rate. We have

compared the performance of RPCCL with the RPCL in Gaussian

mixture clustering and color image segmentation. The numerical

simulations have produced the promising results.

ACKNOWLEDGMENTS

The author would like to sincerely thank the editor and three
anonymous reviewers for their valuable comments and insightful
suggestions. Also, thanks go to Mr. Lap-tak Law for helping to
carry out the experiments on color image segmentation. This work
was supported by a grant from the Research Grant Council of the
Hong Kong SAR (Project No: HKBU 2156/04E), and by a Faculty
Research Grant of Hong Kong Baptist University (Project Code:
FRG/02-03/II-40).

REFERENCES

[1] S.C. Ahalt, A.K. Krishnamurty, P. Chen, and D.E. Melton, “Competitive
Learning Algorithms for Vector Quantization,” Neural Networks, vol. 3,
pp. 277-291, 1990.

[2] H. Akaike, “Information Theory and an Extension of the Maximum
Likelihood Principle,” Proc. Second Int’l Symp. Information Theory, pp. 267-
281, 1973.

[3] H. Akaike, “A New Look at the Statistical Model Identfication,” IEEE Trans.
Automatic Control, pp. 716-723, 1974.

[4] H. Bozdogan, “Model Selection and Akaike’s Information Criterion: The
General Theory and Its Analytical Extensions,” Psychometrika, vol. 52, no. 3,
pp. 345-370, 1987.

[5] J. Breckenridge, “Replicating Clustering Analysis: Method, Consistency
and Validity,” Multivariate Behavioural Research, 1989.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005 1587

Fig. 5. Segmentation results of the House image: (a) The original House image, (b) the results by the RPCL with 30 seed points, where the texture of the red wall is still

retained, and (c) the results by the RPCCL with 18 seed points only, where the wall texture is successfully removed.

Fig. 6. Segmentation results of the Audience image: (a) The original Audience image, (b) the results from the RPCL with 29 seed points, and (c) the results from the

RPCCL with 23 seed points only.

[6] E.W. Forgy, “Cluster Analysis of Multivariate Data: Efficiency Versus
Interpretability of Classifications,” Proc. Biometric Soc. Meetings, 1965.

[7] J. Fridlyand and S. Dudoit, “Applications of Resampling Methods to
Estimate the Number of Clusters and to Improve the Accuracy of a
Clustering Method,” Technical Report 600, Statistics Dept., UC Berkeley,
Sept. 2001.

[8] B. Fritzke, “Growing Cell Structures—A Self-Organizing Network for
Unsupervised and Supervised Learning,” Neural Networks, vol. 7, no. 9,
pp. 1441-1460, 1994.

[9] R.M. Gray, “Vector Quantization,” IEEE ASSP Magazine, vol. 1, pp. 4-29,
1984.

[10] P. Guo, C.L. Philip Chen, and M.R. Lye, “Cluster Number Selection for a
Small Set of Samples Using the Bayesian Ying-Yang Model,” IEEE Trans.
Neural Networks, vol. 13, no. 3, pp. 757-763, 2002.

[11] M. Har-even and V.L. Brailovsky, “Probabilistic Validation Approach for
Clustering,” Pattern Recognition Letters, vol. 16, pp. 1189-1196, 1995.

[12] T. Lange, M.L. Braun, V. Roth, and J.M. Buhmann, “Stability-Based Model
Selection,” Proc. Neural Information Processing Systems, Paper ID: AA17,
2002.

[13] T. Kohonen, “Self-Organized Formation of Topologically Correct Feature
Maps,” Biological Cybernetics, vol. 43, pp. 59-69, 1982.

[14] Y. Linde, A. Buzo, and R.M. Gray, “An Algorithm for Vector Quantizer
Design,” IEEE Trans. Comm., pp. 84-95, 1980.

[15] J.B. MacQueen, “Some Methods for Classification and Analysis of Multi-
variate Observations,” Proc. Fifth Berkeley Symp. Math. Statistics and
Probability, vol. 1, Berkeley, Calif.: Univ. of California Press, pp. 281-297,
1967.

[16] T.M. Martinetz and K.J. Schulten, “A ‘Neural-Gas’ Network Learns
Topologies,” Artificial Neural Networks, pp. 397-402, 1991.

[17] V. Olman, D. Xu, and Y. Xu, “Cubic: Identification of Regulatory Binding
Sites Through Data Clustering,” J. Bioinformatics and Computational Biology,
vol. 1, no. 1, pp. 21-40, 2003.

[18] G. Schwarz, “Estimating the Dimension of a Model,” The Annals of Statistics,
vol. 6, no. 2, pp. 461-464, 1978.

[19] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the Number of
Clusters via the Gap Statistic,” J. Royal Statistical Soc., Series B, vol. 63,
pp. 411-423, 2001.

[20] R. Tibshirani, G. Walther, D. Botstein, and P. Brown, “Cluster Validation by
Prediction Strength,” technical report, Statistics Dept., Stanford Univ.,
Sept., 2001.

[21] H.Q. Wang and D.S. Huang, “A Novel Clustering Analysis Based on PCA
and SOMs for Gene Expression Patterns,” Lecture Notes in Computer Science,
vol. 3174, pp. 476-481, Springer-Verlag, 2004.

[22] L. Xu, “How Many Clusters?: A Ying-Yang Machine Based Theory for a
Classical Open Problem in Pattern Recognition,” Proc. IEEE Int’l Conf.
Neural Networks, vol. 3, pp. 1546-1551, 1996.

[23] L. Xu, “Bayesian Ying-Yang Machine, Clustering and Number of Clusters,”
Pattern Recognition Letters, vol. 18, nos. 11-13, pp. 1167-1178, 1997.

[24] L. Xu, A. Krzy _zzak, and E. Oja, “Rival Penalized Competitive Learning for
Clustering Analysis, RBF Net, and Curve Detection,” IEEE Trans. Neural
Networks, vol. 4, pp. 636-648, 1993.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1588 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

