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With the wide applications of Gaussian mixture clustering, e.g., in semantic video classification [H. Luo, J.
Fan, J. Xiao, X. Zhu, Semantic principal video shot classification via mixture Gaussian, in: Proceedings of
the 2003 International Conference on Multimedia and Expo, vol. 2, 2003, pp. 189–192], it is a nontrivial
task to select the useful features in Gaussian mixture clustering without class labels. This paper, there-
fore, proposes a new feature selection method, through which not only the most relevant features are
identified, but the redundant features are also eliminated so that the smallest relevant feature subset can
be found. We integrate this method with our recently proposed Gaussian mixture clustering approach,
namely rival penalized expectation-maximization (RPEM) algorithm [Y.M. Cheung, A rival penalized EM
algorithm towards maximizing weighted likelihood for density mixture clustering with automatic model
selection, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004, pp. 633–636;
Y.M. Cheung, Maximum weighted likelihood via rival penalized EM for density mixture clustering with
automatic model selection, IEEE Trans. Knowl. Data Eng. 17(6) (2005) 750–761], which is able to deter-
mine the number of components (i.e., the model order selection) in a Gaussian mixture automatically.
Subsequently, the data clustering, model selection, and the feature selection are all performed in a single
learning process. Experimental results have shown the efficacy of the proposed approach.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Gaussian mixture (GM) clustering has been widely applied to a
variety of scientific areas such as semantic video classification [1],
data mining, microarray data analysis, pattern recognition, signal
processing, image processing, and so forth. In general, GM clustering
involves the model selection, i.e., to determine the number of com-
ponents in a mixture (also called model order interchangeably), and
the estimation of the parameters of each component in a mixture,
through the observed data each represented as a vector of features
(also referred to as attributes or variables). Among the existing GM
clustering algorithms, most of them assume that the features of an
observation vector (called observation for short) have the same con-
tribution to the clustering structure, which, however, may not be true
from the practical viewpoint. That is, there may be some irrelevant
features in the observations. Under the circumstances, the inclusion
of such features could hinder the clustering algorithm from detect-
ing the clustering characteristic of observations. In addition, among
the relevant features, some might be redundant as they do not carry
any additional partitioning information. According to the Occam's

∗ Corresponding author. Tel.: +85234115155.
E-mail address: ymc@comp.hkbu.edu.hk (Y.-M. Cheung).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.05.030

Razor principle, those redundant features may deteriorate the gen-
eralization ability of the learned model, e.g., see Ref. [2]. Hence, it is
always desirable to find the smallest relevant feature subset, which
may bring on several other potential benefits such as the reduction
of the collection and storage requirements, the comprehensible en-
hancement of the resulting partition, and so forth. In the supervised
learning, discriminant features or the combination of these features
could be effectively extracted based on the class label information,
e.g., see several recent works [3–6]. However, in the unsupervised
learning, it is a nontrivial task to perform the feature selection in the
absence of the ground-truth labels that could guide the assessment
of the relevance and redundancy for each feature. The problem be-
comes even more challenging when the true number of clusters is
unknown a priori. It is known that the optimal feature subset and the
optimal number of clusters are inter-related, i.e., different clustering
results might be obtained on different feature subsets. This suggests
that the feature selection should be taken into account jointly with
the clustering and the model selection.

In the literature, there have been several representative methods
that address the issue of the feature selection for the clustering. In
the approaches [7,8], features are typically chosen prior to a cluster-
ing algorithm based on the general characteristics of observed data.
Although they significantly reduce the dimensionality, these selected
features may not be necessarily well suited to a mining algorithm
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[9]. Thus, in order to obtain both optima for the feature subset and
the clustering structure, some algorithms, e.g., see Refs. [10,11], wrap
the feature selection around the clustering algorithm. Such kind of
approaches can effectively improve the partitioning accuracy at a
cost of more computations because the feature evaluation phase re-
peatedly uses the intermediate outputs of the clustering algorithm
to evaluate the quality of the feature subset candidates. Recently,
the approaches in Refs. [9,12] have been proposed to tackle these
two tasks in a single optimization paradigm. Several preliminary ex-
periments in Refs. [9,12] have shown the promising results. Never-
theless, such methods suppose that the explicit parametric density
of an irrelevant feature is Gaussian. Although such feature selection
methods can work well in some cases, their performance may be
degraded when the assumption is violated. Moreover, to the best of
our knowledge, the issue of feature redundance has not been stud-
ied yet in the unsupervised feature selections, although it has been
recently studied in the supervised learning [2,13,14].

In this paper, we propose a new feature selection method, in
which the clustering and the feature selection are performed iter-
atively. A new evaluation index is firstly introduced to identify the
most relevant features. This new index does not need to explicitly
specify the parametric density form of irrelevant features in contrast
to the feature relevance measurements used in Refs. [9,12]. The ef-
ficacy of this index has been demonstrated in our preliminary work
[15]. Further, our feature selection method eliminates the redundant
features, using the Markov Blanket filter [13,16], to find the smallest
relevant feature subset that represents the data partitions of interest
quite well. We integrate the proposed feature selection method with
our recently proposed GM clustering approach, namely, rival penal-
ized expectation-maximization (RPEM) algorithm [17,18], which is
able to determine the number of components (i.e., the model order
selection) in a GM automatically. Subsequently, the data clustering,
model selection, and the feature selection are all performed in a
single learning process. Experimental results have shown promising
results of the proposed algorithm on both synthetic and real data.

The remainder of the paper is organized as follows. Section 2
overviews the GM clustering and RPEM algorithm. The proposed fea-
ture selection method is described in Section 3. Section 4 presents
the proposed algorithm in detail, and Section 5 shows the experi-
mental results. Finally, we draw our concluding remarks in Section
6.

2. Overview of GM clustering and RPEM algorithm

2.1. GM clustering

Suppose that N i.i.d. observations, denoted as XN={x1,x2, . . . ,xN},
are generated from a mixture of k∗ Gaussian components, i.e.,

p(xt|�∗)=
k∗∑
j=1

�∗j p(xt|h
∗
j ) (1)

with

k∗∑
j=1

�∗j = 1 and ∀1� j�k∗, �∗j >0,

where each observation xt (1� t�N) is a column vector of d-
dimensional features: x1t , . . . , xdt . Furthermore, p(xt|h∗j ) is the jth

Gaussian component with the parameter h∗j = {µ∗j ,R
∗
j }, where µ∗j

and R∗j are the mean vector (also called center vector interchange-
ably) and covariance matrix of the jth component, respectively. �∗j
is the true mixing coefficient of the jth component in the mixture.
The main task of GM clustering analysis is to find an estimate of

�∗ = {�∗j ,�
∗
j }k
∗

j=1, denoted as � = {�j,�j}kj=1, from N observations,

where k is an estimate of the true model order k∗. A general ap-
proach is to search in the parameter space to find a � that reaches
a maximum of the fitness in terms of maximum likelihood (ML)
defined below:

�ML = argmax
�
{logp(XN|H)}.

The commonly used searching strategy is the EM algorithm [19–21].
However, there is no penalty for the redundant mixture components
in the above likelihood, which means that the model order k cannot
be automatically determined and has to be assigned in advance.
Although some model selection criteria, e.g., see Refs. [22,23], have
been proposed in the literature, they may require users to compare
the candidate models for a range of orders to determine the optimal
one, whose computation is laborious.

2.2. The RPEM algorithm

Recently, the RPEM algorithm [18,17] has been proposed to de-
termine the model order automatically together with the estimation
of the model parameters. This algorithm introduces unequal weights
into the conventional likelihood; thus the weighted likelihood is
written below:

Q(�,XN)=
1
N

N∑
t=1

logp(xt|�)= 1
N�

N∑
t=1

M(xt;�) (2)

with

M(xt;�)=
k∑

j=1
g(j|xt ,�) log[�jp(xt|�j)]−

k∑
j=1

g(j|xt ,�) logh(j|xt ,�),

(3)

where

h(j|xt ,�)=
�jp(xt|�j)
p(xt|�)

is the posterior probability that xt belongs to the jth component
in the mixture, and k is greater than or equal to k∗. g(j|xt ,�)'s are
designable weight functions, satisfying the constraints below:

k∑
j=1

g(j|xt ,�)= � for any 1� t�N

and

∀j, lim
h(j|xt ,�)→0

g(j|xt ,�) logh(j|xt ,�)= 0,

where � is a positive constant. In Ref. [18], they are constructed by
the following equation (with �= 1):

g(j|xt ,�)= (1+ �t)I(j|xt ,�)− �th(j|xt ,�) (4)

with

I(j|x,�)=
{
1 if j= c ≡ arg max

1� i�k
h(i|x,�)

0 if j= r �= c
(5)

and �t is a small positive quantity. This construction of weight func-
tions reflects the pruning scheme: when a sample xt comes from a
component that indeed exists in the mixture, the value of h(j|xt ,�)
is likely to be the greatest, thus this component will be the winner,
i.e., j = c with I(j|x,�) = 1. Accordingly, a positive weight g(c|xt ,�)
will strengthen it in the temporary model. In contrast, all other
components fail in the competition and are treated as the “pseudo-
components”. As a result, the negative weights are assigned to them
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as a penalty. Over the learning process of�, only the genuine clusters
will survive finally, whereas the “pseudo-clusters” will be gradually
faded out from the mixture.

The RPEM gives an estimation of �∗ via maximizing weighted
likelihood (MWL) in Eq. (2), i.e.,

�MWL = argmax
�
{Q(�,XN)}.

The more detailed implementation of the RPEM can be found in Ref.
[18]. In the following, we summarize its major steps in Algorithm 1.

Algorithm 1. The RPEM algorithm
input: {x1,x2, . . . ,xN}, k, the learning rate �, the maximum num-
ber of epochs epochmax, initialize � as �(0).
output: The converged �.

1 epoch_count← 0, m← 0;
2 while epoch_count�epochmax do
3 for t← 1 to N do
4 Step 1: Given �(m), calculate h(j|xt ,�(m))'s to obtain

g(j|xt ,�(m))'s using Eq. (4);

5 Step 2: �(m+1) =�(m) +��=�(m) + � �M(xt;�)
��

∣∣∣∣
�(m)

6 where � is a small positive learning rate. Let m← m+ 1.
7 end
8 epoch_count← epoch_count+ 1;
9 end

3. Unsupervised feature selection

3.1. Selecting the relevant features

Let us begin with a simple example. We generate the data points
from a bivariate two-component GM as shown in Fig. 1. If the two
clusters are projected onto the Y-axis, it is unable to distinguish these
two clusters by the feature Y because the observations from the two
clusters are in the same dense region of this dimension. Hence, the
feature Y will not be helpful in finding the clustering structure, i.e.,
it is irrelevant to the clustering. On the contrary, the projections
onto the X-axis can provide the useful information regarding the
clustering structure, thus the feature X is relevant to the clustering.

Based on this scenario, we claim that a feature is less relevant if,
along this feature, the variance of observations in a cluster is closer to
the global variance of observations in all clusters. Subsequently, we
propose the following quantitative index to measure the relevance of
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Fig. 1. The feature X is relevant to the partitioning, while the feature Y is irrelevant.

each feature:

SCOREl =
1
k

k∑
j=1

Scorel,j =
1
k

k∑
j=1

⎛
⎝1−

�2l,j

�2l

⎞
⎠ , l= 1, . . . , d, (6)

where �2l,j is the variance of the jth cluster projected on the lth
dimension:

�2l,j =
1

Nj − 1

Nj∑
t=1

(xl,t − 	l,j)
2, xt ∈ jth cluster,

Nj =
∑N

t=1I(j|xt ,�) is the number of data in the jth cluster, 	l,j is

the mean of the lth feature xl,t 's in the jth cluster, and
∑k

j=1Nj = N.

Furthermore, �2l is the global variance of the whole data on the lth
dimension:

�2l =
1

N − 1

N∑
t=1

(xl,t − 	l)
2, 	l =

1
N

N∑
t=1

xl,t .

The Scorel,j = 1 − (�2l,j/�
2
l ) measures the dissimilarity between the

variance in the jth cluster and the global variance on the lth feature,
which equivalently indicates the relevance of the lth feature for the
jth cluster. Thus, SCOREl represents the average relevance of the lth
feature to the clustering structure. When the value of SCOREl is close
to the maximum value (i.e., 1), it represents the case that all the
local variances of the k clusters on this dimension are considerably
small in comparison to the global variance of this dimension, which
is tantamount to indicating these clusters far away from each other
on this dimension. Hence, this feature is very useful to detect the
grouping structure. Otherwise, the value of SCOREl will be close to the
minimum value, i.e., 0. To prevent the score from being degenerated
in a situation where �2l,j is greater than �2l in Eq. (6),which may be
caused by numerical computation in computer, we clip the Scorel,j
at 0. That is, we update Scorel,j in Eq. (6) by

Scorel,j =max

⎛
⎝0, 1−

�2l,j

�2l

⎞
⎠ . (7)

According to the score of each feature, we can obtain the selected
relevant feature subset R′ in the following way:

R′ = F − {Fl|SCOREl <
, Fl ∈ F},

where F is the full feature set and 
 is a user-defined threshold value.
By a rule of thumb, we set 
 ∈ [0, 0.5]. In the next subsection, we
will further select the non-redundant features from R′.

3.2. Selecting the non-redundant features

Based on the information theory, we know that a feature is re-
dundant if it carries no additional partition information provided
that the remaining features are presented. Hence, we are able to ig-
nore it without compromising the model performance. Such an idea
can be realized by a feature's Markov Blanket [24] as follows, which
is originally proposed in the domain of supervised learning.

Definition 1 (Markov Blanket). Given a feature Fl, letMl ⊂ F (Fl /∈Ml),
Ml is the Markov Blanket for Fl if the probability

P(F −Ml − Fl,C|Fl,Ml)= P(F −Ml − Fl,C|Ml),

where C is the class label.

Hence, if a Markov Blanket Ml for Fl can be found in the feature
set F, i.e., Ml subsumes the information that Fl has about C, we are
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able to eliminate the feature Fl from F without affecting the class
prediction accuracy.

Since there might not be a full Markov Blanket for a feature,
Koler and Sahami [16] proposed a method that sequentially elimi-
nates such features based on the existence/non-existence of an ap-
proximate Markov Blanket in the candidate feature subset. Broadly,
it iteratively constructs a candidate Markov Blanket Ml for Fl, and
measures how close Ml is to a true Markov Blanket for Fl. If Ml is the
closest one to a true Markov Blanket for Fl, Fl is eliminated and the
process repeats. The closeness of Ml to a true Markov Blanket for Fl
is measured by the expected cross entropy:

�(Fl|Ml)=
∑
fMl

,fl

P(Ml = fMl
, Fl = fl)

× KL(P(C|Ml = fMl
, Fl = fl)‖P(C|Ml = fMl

)), (8)

where fMl
denotes the features in the candidate Markov Blanket,

KL(.‖.) denotes the Kullback–Leibler divergence with KL(P‖Q) =∑
xP(x) log(P(x)/Q(x)).
If Ml is a genuine Markov Blanket for Fl, we have �(Fl|Ml) =

0. An approximate Markov Blanket is formulated by relaxing this
requirement, i.e., let �(Fl|Ml) be a very small value. The candidate
Markov Blanket is constructed by picking the top T features that
have the highest Pearson correlation to Fl, where T (i.e., the size of
Markov Blanket) is often a small integer. The reason for formulating
the candidate Markov Blanket in this way is that the features in Fl's
Markov Blanket Ml are directly influenced by Fl, while other features
are conditionally independent of it as given byMl. Since the expected
cross entropy needs to compute the posterior probability P(C|.), it
will be convenient to utilize the binary values of original feature
values to save the computational costs. An applicable discretization1

method can be found in Ref. [13]. The complete Markov Blanket
filtering algorithm in Refs. [13,16] is presented in Algorithm 2.

Algorithm 2. The Markov blanket filtering algorithm
Initialize
– Let m= 1 and G(m) = F;
Iterate
– For Fl ∈ G(m), let Ml be the set of T features, and Fi ∈ G(m) − Fl

for which the correlation between Fl and Fi is the highest;
– Compute �(Fl|Ml) for each feature l;
– Choose the Flm that minimizes �(Fl|Ml), and define G(m+1)

= G(m) − Flm ;
– Let m=m+ 1;
Until |G(m)| = T.

The sequence {l1, l2, . . . , l|F|−T }, in which the features are removed
by this method, corresponds to a feature ranking in ascending order
of non-redundancy. Thereby, the feature that appears first in the list
(i.e. Fl1 , the first one that has been removed from F) is the most re-
dundant among all the features, while the features left after Markov
Blanket filtering algorithm has stopped, i.e., {F− {Fl1 , Fl2 , . . . , Fl|F|−T }},
are the least redundant.

Unfortunately, the Markov Blanket filtering algorithm needs class
labels and cannot be straightforwardly applied to the clustering prob-
lems. To circumvent this difference, we assume that a set of clus-
ters can be modeled as a set of different classes. Moreover, since the
minimum value of expected cross entropy in the mth iteration, writ-
ten as minFl∈G(m)�(Fl|Ml), increases overm, the most non-redundant

1 The discretized feature is only used for computing the KL divergence, and
the Pearson correlation is still calculated with the original feature values.

features can be simply obtained via

R′′ =
{
Flm | min

Fl∈G(m)
�(Fl|Ml) > � · min

Fl∈G(1)
�(Fl|Ml)

}

∪ {R′ − {Fl1 , Fl2 , . . . , Fl|R′ |−T }},

where m= 1, 2, . . . , |R′| − T, Flm ∈ R′, G(1) = R′, and � is a user-defined
threshold (e.g., �= 2).

4. Iterative feature selections in the RPEM algorithm

Since the optimal number of clusters and the optimal feature sub-
set are inter-related, we integrate the feature selection schemes of
Section 3 into the RPEM algorithm so that the feature selection and
the clustering process are performed iteratively in a single learning
process. Specifically, given a feature subset, we run the RPEM algo-
rithm by scanning all observations once (i.e., one epoch) and obtain a
near optimal partition. Then, the proposed feature selection scheme
outputs a refined feature subset in terms of the relevance and non-
redundance under the current data partition. Subsequently, a more
accurate partition will be performed using the selected feature sub-
set in the next epoch. Algorithm 3 presents the details of the pro-
posed algorithm.

Algorithm 3. Iterative feature selection in RPEM clustering
algorithm

input: XN , kmax,�, epochmax,
, �, T
output: The most relevant and non-redundant feature subset R̂

1 R̂← {F};
2 epoch_count← 0, m← 0;
3 Initialize � as �(0);
4 while epoch_count�epochmax do
5 for t← 1 to N do
6 Step 1: Given �(m), calculate h(j|xt ,�(m))'s to obtain

g(j|xt ,�(m))'s on R̂;
7 Step 2: Update parameters � on F by �(m+1)

=�(m) + � �M(xt;�)
��

∣∣∣∣
�(m)

, and let m← m+ 1;

8 end
9 R̂← FeatureSelection(F,
, �, T);
10 epoch_count← epoch_count+ 1;
11 end

Procedure: Feature Selection (F,
, �, T)
input: F, 
, �, T
output: R̂
// Select the relevant features

1 Calculate SCOREl, Fl ∈ F;
2 R′ ← F − {Fl|SCOREl <
, Fl ∈ F};

Select the non-redundant features
3 Perform Markov Blanket filtering;
4 R′′ = {Flm |minFl∈G(m)�(Fl|Ml) > � ·minFl∈G(1)�(Fl|Ml)}
∪ {R′ − {Fl1 , Fl2 , . . . , Fl|R′ |−T }};

5 R̂← R′′;

In the above algorithm, theweight function g(j|xt ,�)'s is designed
as

g(j|xt ,�)= I(j|xt ,�)+ h(j|xt ,�), j= 1, . . . , kmax. (9)

It can be shown that the above design satisfies the required con-
straints on the g(j|xt ,�)'s. Evidently, at each time step, such a design
gives the winning component only, i.e., the cth component, an extra
award with the amount of I(c|xt ,�)= 1. This weight design actually
penalizes those rival components in an implicit way. Consequently,
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analogous to the weight design in Eq. (4), it enables the RPEM al-
gorithm to automatically determine an appropriate number of com-
ponents as well by gradually fading the redundant components out
from the mixture.

Since the RPEM algorithm is able to prune the redundant com-
ponents, the calculation of relevance score in each epoch should be,
therefore, adjusted as

SCOREl =
1
knz

knz∑
j=1

Scorel,j =
1
knz

knz∑
j=1

max

⎛
⎝0,

⎛
⎝1−

�2l,j

�2l

⎞
⎠

⎞
⎠ ,

where knz is the number of the clusters in the current partition:

knz = kmax − |K|, K = {j|�j ≡ 0, j= 1, . . . , kmax},

|K| is the cardinality of the set K, which contains the index variables
marking the clusters whose weights have been pruned to zero. In
implementation, we can find the component whoseweight is smaller
than 1/N, where N is the number of the observations. We should
not include such components in the calculation of feature relevance
score.

5. Experimental results

This section shows the experimental results on two synthetic data
sets and four real-world benchmark data sets. In all the experiments,
the initial number of components kmax should be safely large so that
the initialization properly covers the data. We therefore, set kmax =
10, and the initial mixing coefficients �j=1/kmax (j=1, . . . , kmax). The
initial centers of the clusters µj's were randomly chosen from the
data points, and the initial covariance matrices were

R
(0)
j =

1
5d

trace

⎛
⎝ 1
N

N∑
t=1

(xt −µ)(xt −µ)′
⎞
⎠ I

where µ= (1/N)
∑N

t=1xt is the global mean vector of the data, and I
is an identity matrix.

Furthermore, we can set epochmax at a value that is large enough.
Alternatively, we can set it at a medium value at first. If the algorithm
has not converged yet after epochmax epochs, we may adaptively
increase the value of epochmax a little and let the algorithm run more
several epochs until the convergence is achieved. The T parameter
has been studied in Ref. [16]. It is suggested that T should be set at a
very small integer, e.g., 1 or 2. We, therefore, set it at 2. It was found
that there was no apparent difference between the performance by
using T = 2 and 1. As for the two thresholds, 
 and �, as a rule of
thumb, we found that the algorithm works well when they were
set at 0.4 and 2, respectively. In the following, we report the results
based on these settings.

5.1. Synthetic data

Firstly, we investigated the capability of the proposed algorithm
to select the relevant and non-redundant features while determining
the correct number of clusters simultaneously. As shown in Fig. 2(a),
1000 data points were generated by the following bivariate GM:

p(x|�∗)= 0.3 ∗ p
(
x

∣∣∣∣
(
1
1

)
,
(
0.1 0.0
0.0 0.1

))

+ 0.4 ∗ p
(
x

∣∣∣∣
(
1
5

)
,
(
0.1 0.0
0.0 0.1

))

+ 0.3 ∗ p
(
x

∣∣∣∣
(
5
5

)
,
(
0.1 0.0
0.0 0.1

))
.

In Fig. 2(a), we are unable to discriminate the three clusters
by a single dimension alone. Actually, both features are relevant

to the clustering. We duplicated the two dimensions and formed a
four-dimensional data. Each data were further appended with six
independent variables that were sampled from a standard normal
distribution and finally yielding a 10-dimensional data set to be
analyzed.

Apparently, either {F1, F2} or {F3, F4} can determine the three clus-
ters, i.e., one of the two pairs of features are redundant. The last six
dimensions are unimodal, thus being irrelevant to the clustering. We
ran the proposed algorithm (denoted as IRRFS-RPEM) 10 times, the
three components and the non-redundant relevant feature subset
were always correctly found in all runs. Fig. 2(b) shows the learning
curve of the component mixing coefficients in a typical run. Table 1
lists some intermediate outputs. In the column of “ranking”, the first
row of each epoch is the relevance score (SCOREl) in descending or-
der; the second row is the minimum value of expected cross entropy,
with its corresponding feature in the sequential removal order by
the Markov Blanket filtering. The two rows under the column of “se-
lected features” list the outputs in the two feature selection stages.

We then compared our algorithm with the one proposed by Law
et al. [9], denoted as GMClusFW. GMClusFW makes the soft deci-
sions on whether the feature is relevant for the clustering or not, and
has to pre-assume the irrelevant features conformed to a Gaussian
distribution. Thereby, its performance may be degraded to a certain
degree if this assumption is violated. To illustrate this, we appended
six variables uniformly distributed between zero and five to the data
with the above four relevant dimensions, but the distribution of ir-
relevant features was still supposed to be the standard Gaussian. It is
found that the algorithm of Ref. [9] was unable to give a proper infer-
ence about the clusters any more. Instead, it always largely over-fits
the data as illustrated in Fig. 3(a). This implies that the algorithm of
Ref. [9] is sensitive to the assumption upon the feature distributions.

In contrast, the proposed algorithm has circumvented this draw-
back. Fig. 3(b) demonstrates its learning curve of the component
mixing coefficients. Table 2 presents its intermediate outcomes. As
shown in Fig. 3(b), it succeeded to find the true clustering structure
in the original feature space. Besides, only two most relevant fea-
tures (i.e. {F3, F4} as given in Table 2) were used without redundant
features.

5.2. Real-world data

We further investigated the performance of the proposed algo-
rithm on four benchmark real-world data sets [25]. We normalized
the mean and variance of each data set to 0 and 1, respectively. For
comparison, we also performed the RPEM algorithm, GMClusFW al-
gorithm in Ref. [9], and a variant of the proposed algorithm (denoted
as IRFS–RPEM) that carried out the relevancy analysis only in the
feature selection phase without considering the feature redundancy.
The same weight functions were chosen for RPEM, IRFS–RPEM and
IRRFS–RPEM.We evaluated the clustering accuracy using the index of
error rate. After dividing the original data set into the training set and
the testing set of the equal size, we executed the above algorithms on
the training set to obtain the parameter estimates of the GM model,
then each data point in the testing set was appended a label of the
cluster it belonged to, where the cluster label was determined by
the majority vote of training data in that cluster. The error rate was
computed by the mismatch degree between the obtained labels of
the testing points and their ground-truth class labels. The mean and
the standard deviation of the error rate, along with those of the esti-
mated number of clusters in 10-fold runs on the four real-world data
sets are summarized in Table 3. The following are some remarks:

Remark 1. It can be seen that both IRFS–RPEM and IRRFS–RPEM
have reduced the error rates on all sets compared to the RPEM algo-
rithm because not all features are relevant to the partitioning task.
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Fig. 2. (a) The bivariate data with three-cluster structure. (b) The learning curve of ({�j}kmax
j=1 ) by the proposed IRRFS-RPEM algorithm on the first synthetic data.

Table 1
The intermediate outcomes of the proposed IRRFS-RPEM algorithm on the first synthetic data, where the corresponding feature Fl of a score under the column of “ranking”
is shown in the parentheses

Epoch Ranking Selected features

1 0.97(F1) 0.97(F4) 0.97(F3) 0.97(F2) 0.35(F6) 0.33(F7) 0.22(F10) 0.17(F8) 0.11(F5) 0.11(F9) {F1, F2, F3, F4}
0(F1) 0(F2) {F3, F4}

15 0.86(F1) 0.86(F2) 0.84(F4) 0.84(F3) 0.29(F7) 0.24(F8) 0.22(F6) 0.21(F10) 0.20(F5) 0.17(F9) {F1, F2, F3, F4}
0(F1) 0(F2) {F3, F4}

50 0.97(F2) 0.97(F1) 0.97(F4) 0.97(F3) 0.04(F7) 0.03(F5) 0.01(F8) 0.01(F9) 0.00(F10) 0.00(F6) {F1, F2, F3, F4}
0(F1) 0(F2) {F3, F4}

0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

epoch

m
ix

in
g 

co
ef

fic
ie

nt
s 

α 

Fig. 3. (a) The clustering results on the second synthetic data set obtained by GMClusFW in Ref. [9] projected on the first two features: k=10 (over-fitting). (b) The learning
curve of ({�j}kmax

j=1 ) by the proposed IRRFS-RPEM algorithm on the second synthetic data: k= 3 (correct).

Remark 2. In Table 3, RPEM gives the higher accuracy of model
order. The possible reasons are as follows: Firstly, the number of
classes may not be exactly the same as the number of clusters in the
data. Secondly, according to our experimental results, we found that

the involvement of these less discriminating features could not only
lead to the “over-fitting” of cluster model (which has been pointed
out by Law et al. [9] and etc.), but also may result in “under-fitting”
(see Table 3, the model order results for RPEM algorithm). Therefore,
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Table 2
The intermediate outcomes of the proposed IRRFS-RPEM algorithm on the second synthetic data

Epoch Ranking Selected features

1 0.97(F1) 0.97(F2) 0.97(F3) 0.97(F4) 0.39(F6) 0.36(F5) 0.27(F9) 0.24(F8) 0.17(F10) 0.16(F7) {F1, F2, F3, F4}
0(F1) 0(F2) {F3, F4}

7 0.67(F1) 0.66(F4) 0.66(F2) 0.62(F3) 0.21(F8) 0.17(F6) 0.17(F10) 0.11(F7) 0.06(F5) 0.03(F9) {F1, F2, F3, F4}
0(F1) 0(F2) {F3, F4}

50 0.97(F1) 0.97(F2) 0.97(F3) 0.97(F4) 0.04(F10) 0.01(F8) 0.01(F9) 0.01(F7) 0.00(F5) 0.00(F6) {F1, F2, F3, F4}
0(F1) 0(F2) {F3, F4}

Table 3
Results of the 10-fold runs on the test sets for each algorithm

Data set Method Model order (mean± std) Error rate (mean± std)

wdbc RPEM 1.7± 0.4 0.2610± 0.0781
d= 30 GMClusFW 5.7± 0.3 0.1005± 0.0349
N = 569 IRFS–RPEM 2.3± 0.4 0.1021± 0.0546
k∗ = 2 IRRFS–RPEM fixed at 2 0.0897± 0.0308

sonar RPEM 2.3± 0.8 0.4651± 0.0532
d= 60 GMClusFW 1.0± 0.0 0.5000± 0.0000
N = 1000 IRFS–RPEM 2.8± 0.6 0.3625± 0.0394
k∗ = 2 IRRFS–RPEM 2.7± 0.7 0.3221± 0.0333

wine RPEM 2.5± 0.7 0.0843± 0.0261
d= 13 GMClusFW 3.3± 1.4 0.0673± 0.0286
N = 178 IRFS–RPEM 4.7± 1.7 0.0492± 0.0182
k∗ = 3 IRRFS–RPEM 3.1± 0.5 0.0509± 0.0248

ionosphere RPEM 1.8± 0.5 0.4056± 0.0121
d= 32 GMClusFW 3.2± 0.6 0.2268± 0.0386
N = 351 IRFS–RPEM 2.6± 0.8 0.2921± 0.0453
k∗ = 2 IRRFS–RPEM 2.5± 0.5 0.2121± 0.0273

Each data set has N data points with d features from k∗ classes.

Table 4
The proportions of the average selected features in the 10-fold runs

Data IRFS–RPEM (%) IRRFS–RPEM (%)

synthetic1 40 20
synthetic2 40 20
wdbc 51.16 50.33
sonar 57 55.83
wine 83.65 62.31
ionosphere 68.13 34.38

the clustering accuracy may be affected. It is worth to mention that
we found the same “under-fitting” phenomenon when applying the
algorithm by Law et al. to the sonar data. Their algorithm always
determines that there is only one cluster, but actually there are at
least two clusters in this data (see Table 3).

Remark 3. Table 4 lists the proportions of the average selected fea-
tures by IRFS–RPEM and IRRFS–RPEM in the whole feature set for
each data sets. For the wdbc and the sonar data sets, IRFS–RPEM
and IRRFS–RPEM have selected approximately the same number of
features with the similar predictive performances. This implies that
there may not be much redundancy in the selected relevant fea-
tures for these two data sets. In contrast, the wine and ionosphere
sets both likely present the redundancy in the selected relevant fea-
tures. In particular, for the ionosphere data set, the accuracy even
gets improved with much fewer features (nearly 1

3 of its original
size) selected by IRRFS–RPEM, compared to the features selected
by IRFS–RPEM. Although IRFS–RPEM seems to give a slightly better
predictive accuracy on the wine data, the number of components it
utilized is greater than the correct one.

Remark 4. The proposed algorithm outperforms GMClusFW in
terms of error rate as shown in Table 3. Further, IRRFS–RPEM always
gives a smaller estimation of the model order than GMClusFW. The
latter is more likely to use more components for all the utilized data

sets, especially for the wdbc data set. This phenomenon is consistent
with the results we have demonstrated on the second synthetic
data set.

6. Concluding remarks

In this paper, we have proposed a new feature selection method
for GM clustering. Firstly, we have introduced a new feature rele-
vancemeasurement index to identify themost relevant features. This
new index does not need to explicitly specify the parametric density
form of irrelevant features, thus it is more applicable to the situation
without knowing the distribution of the irrelevant features a priori.
Secondly, we have extended the usage of the Markov Blanket filter
to select the non-redundant relevant features in the unsupervised
learning. These feature selection schemes are then integrated into
the RPEM clustering algorithm, whereby a new algorithm iterating
between the clustering and the feature selection has been developed.
Experiments have shown the effectiveness of the proposed algorithm
in comparison with the existing methods on both the synthetic and
real-world benchmark data sets. Undoubtedly, the techniques pro-
posed in this paper are applicable to semantic multimedia data as
well, e.g. semantic image classification, in which the irrelevant and
redundant features are common in classifying the semantic images.
We shall leave this study elsewhere in the future.
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