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a b s t r a c t

Competitive learning approaches with individual penalization or cooperation mechanisms have the
attractive ability of automatic cluster number selection in unsupervised data clustering. In this paper, we
further study these two mechanisms and propose a novel learning algorithm called Cooperative and
Penalized Competitive Learning (CPCL), which implements the cooperation and penalization mechanisms
simultaneously in a single competitive learning process. The integration of these two different kinds of
competition mechanisms enables the CPCL to locate the cluster centers more quickly and be insensitive to
the number of seed points and their initial positions. Additionally, to handle nonlinearly separable clusters,
we further introduce the proposed competition mechanism into kernel clustering framework. Correspond-
ingly, a new kernel-based competitive learning algorithm which can conduct nonlinear partition without
knowing the true cluster number is presented. The promising experimental results on real data sets
demonstrate the superiority of the proposed methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As an efficient approach to clustering analysis, competitive
learning has been widely applied to a variety of research areas
such as data mining [1], computer vision [2], bioinformatics [3]
and so forth. However, in an unsupervised learning environment,
clustering problems can be extremely difficult especially when the
number of clusters is unavailable in advance. That is because
traditional methods, including the k-means algorithm [4] and
Expectation-Maximization (EM) algorithm [5], need the users to
specify the exact number of clusters as an input; otherwise, they
will likely produce incorrect clustering results. Generally, choosing
the cluster number is an ad hoc decision based on prior knowledge
of given data and it becomes nontrivial when the data has many
dimensions [6].

In the literature, competitive learning with different mechan-
isms have received wide attention due to their effectiveness and
interpretability for automatic cluster number detection. For exam-
ple, with a penalization mechanism, the Rival Penalized Compe-
titive Learning (RPCL) [7] can automatically select the cluster
number by gradually driving extra seed points (i.e. the variables

that are learnable towards the center of data clusters in the input
space) far away from the dense region of the input data set. In this
learning approach, for each data observation (also called input),
not only the winner among all seed points is updated to adapt to
the input, but also the second winner is penalized by a much
smaller fixed rate (also called delearning rate hereinafter). How-
ever, empirical studies have found that the performance of RPCL
algorithm is sensitive to the delearning rate, whose optimal setting
differs for variant problems [7,8]. To solve this problem, an
improved version named Rival Penalization Controlled Competi-
tive Learning (RPCCL) [8] was proposed, which controls the rival-
penalized strength through an adaptive way based on the distance
between the winner and the rival relative to the current input. In
general, as pointed out in [9], both of RPCL and RPCCL always
penalize the extra seed points even if they are much far away from
the dense region of the input data set. Consequently, the learning
curves of seed points obtained by these algorithms as a whole will
not tend to convergence. By contrast, another variant of RPCL
called Stochastic RPCL (S-RPCL) [9], developed from the Rival
Penalized Expectation-Maximization (RPEM) algorithm [9], can
lead to a convergent learning process by penalizing the nearest
rival stochastically based on its posterior probability. Moreover, to
theoretically analyze the convergence behavior of rival penalized
leaning method, Ma and Wang [10] have presented a general form
of RPCL algorithm, called distance-sensitive RPCL (DSRPCL) and
proved that the correct convergence of DSRPCL is associated with
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the minimization of a cost function defined on the weight vectors
of a competitive learning network. It has also been pointed out in
[10] that the DSRPCL algorithm may result in wrong convergence
when the specified cluster number k becomes much larger than
the true cluster number kn (i.e. k42kn). This phenomenon also
exists in the other versions of the rival penalized learning algo-
rithm as shown in [11]. In contrast, the Competitive Repetition
Suppression (CoRe) clustering method proposed in [11] can give a
good performance if it is initialized with sufficiently large number
of seed points. This method is inspired by a cortical memory
mechanism and extends the RPCL framework by allowing multiple
winners and losers in each learning iteration.

Besides the penalization mechanism, a cooperation strategy
can also be utilized for detecting the cluster number in the
competitive learning paradigm. One example is the Competitive
and Cooperative Learning (CCL) [12] algorithm, in which the
winner of each learning iteration will dynamically cooperate with
several nearest rivals to update towards the input data together.
Consequently, the CCL can make all the seed points converge to
the corresponding cluster centers and the number of those seed
points stably locating at different positions is exactly the cluster
number. Nevertheless, further empirical studies presented by Li
et al. [13] indicate that the performance of CCL is somewhat
sensitive to the initial positions of seed points. To overcome this
difficulty, they have proposed an improved variant, namely Coop-
eration Controlled Competitive Learning (CCCL) method, in which
the learning rate of each seed point within the same cooperative
team is adjusted adaptively based on the distance between the
cooperator and the current input. Nevertheless, some empirical
studies have found that the CCCL algorithmmay still not work well
if the clusters are seriously overlapped or initial seed points are all
gathered in one cluster.

To sum up, the competitive learning methods with a pure
penalization or cooperation mechanism have different advantages
and limitations. Therefore, designing a new competitive learning
method, which features the merits of both penalization and coop-
eration mechanisms while counteracts their respective drawbacks,
will definitely improve the accuracy of clustering analysis without
knowing cluster number. However, since these two kinds of com-
petitive mechanisms conduct an opposite learning process, i.e.
penalization is to drive extra seed points far away from the input
space while cooperation is to converge all seed points to the
corresponding cluster centers, it is a nontrivial task to combine
them into a single learning procedure. Moreover, all of the afore-
mentioned competitive learning methods are based on the frame-
work of k-means approach and only suitable for linearly separable
clusters. Nevertheless, a nonlinearly separable cluster structure is
common from a practical viewpoint. In the literature, kernel-based
clustering methods have been widely used to analyze nonlinear
clusters [14,15]. This kind of approaches utilizes kernel functions to
map the original data into a high dimensional feature space, in
which a linear partition will result in a nonlinear partition in the
input space. Corresponding algorithms include the kernel k-means
[16], global kernel k-means [17], kernel SOM [18,19] and so on.
However, all these kernel clustering algorithms also need the
number of clusters to be specified exactly, which becomes difficult
in an unsupervised learning environment. To the best of our
knowledge, conducting kernel-based clustering without knowing
the cluster number has not been well studied yet.

In this paper, we further study the penalization and cooperation
mechanisms, which actually conduct opposite shift tracks on the
seed points (i.e. scatteration and aggregation), and explore a novel
learning model which can simultaneously inherit the advantages of
these two different kinds of mechanisms. Specifically, a new compe-
titive learning algorithm, namely Cooperative and Penalized Compe-
titive Learning (CPCL), which performs cooperation and penalization

in a single competitive learning process is presented. In this method,
given an input, the winner generated from the competition of all
seed points will not only dynamically select several nearest compe-
titors to form a cooperative team to adapt to the input together, but
also penalize some other seed points which compete intensively
with it. The cooperation mechanism here enables the closest seed
points to update together and gradually converge to the correspond-
ing cluster centers while the penalization mechanism supplies the
other seed points with the opportunity to wander in the clustering
space and search for more appropriate cluster centers. Consequently,
this algorithm features the fast convergence speed and the robust
performance against the initialization of seed points. Moreover, to
handle the nonlinearly separable clusters, we further introduce the
proposed cooperative and penalized competitive mechanism into
the learning framework of the kernel k-means method. Correspond-
ingly, a new kernel-based clustering algorithmwhich can nonlinearly
partition given data without knowing the true cluster number is
presented. Experiments on variant real data sets have demonstrated
the good performance of proposed algorithms.

The rest of this paper is organized as follows. Section 2 describes
the proposed CPCL approach and gives out the corresponding
algorithm. Section 3 introduces the CPCL method into the kernel
k-means framework and presents a new algorithm to solve the
cluster number selection problem in kernel-based clustering. Then,
Section 4 shows the experimental results on various real data sets.
Finally, we draw a conclusion in Section 5.

2. Cooperative and penalized competitive learning (CPCL)
approach

To simultaneously inherit the advantages of the two opposite
competitive strategies (i.e., cooperation and penalization), we pre-
sent a novel competitive learning model namely Cooperative and
Penalized Competitive Learning (CPCL), which can perform coop-
eration and penalization in a single competitive learning process.

2.1. Cooperation and Penalization Mechanisms in CPCL

This sub-section describes the cooperation and penalization
mechanisms of CPCL approach. Suppose we have N inputs,
x1; x2;…; xN , coming from kn unknown clusters, and k (kZkn)
seed points, m1;m2;…;mk, which are randomly initialized in the
input space. Subsequently, given an input xt each time, the winner
among k seed points denoted as mc is determined by

IðjjxtÞ ¼
1 if j¼ c¼ arg min

1r irk
fγi Jxt�mi J2g

0 otherwise;

8<
: ð1Þ

with the relative winning frequency γi of mi defined as

γi ¼
ni

∑k
j ¼ 1nj

; ð2Þ

where ni is the winning times of mi in the past [20].
After selecting out the winner mc , the area centered at mc with

the radius Jmc�xt J is regarded as the territory of mc . Fig. 1 has
shown the winner's territory in two-dimensional space. Any other
seed points which have intruded into this territory will be
dominated by mc . That is, any other seed point mj which satisfies

Jmc�mj Jr Jmc�xt J ð3Þ

will either cooperate with the winner or be penalized by it, such as
m1, m2 and m3 in Fig. 1. Subsequently, a question is naturally
arisen: how to design the cooperation and penalization mechanism
for a seed point?
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Before showing the cooperation mechanism, let us consider the
cooperation behavior in our social life first. Usually, we can find
that a person needs to evaluate its competitor's reliability before
setting up cooperation relationship. If the reliability is high, it will
be content to cooperate with this competitor to gain more
benefits; otherwise, the cooperative relationship will not be built.
Inspired by this phenomenon, in CPCL model, we assign a
confidence coefficient, denoted as Ec, to the winning seed point
mc. Here, Ec is a value fallen into the range [0,1] and measures the
reliability of a winner. As long as Ec is calculated, the cooperation
region of mc can be determined by its confidence level. That is, the
more reliable the winner is, the more seed points in its territory
will cooperate with it. Then, the subsequent question is how to
compute Ec?

It is known that the reliability of an individual is influenced by
its experience. Evidently, more successful experience results in
higher reliability. Similarly, the confidence level of a winning seed
point in clustering learning should be changed over its learning
experience. Specifically, we let Rc be the accumulated reliability of
the winner mc with

Rc ¼ η � nc; ð4Þ
where η is a pre-specified small positive learning rate and nc
denotes the winning times of mc in the past. That is, the reliability
of a winning seed point is determined by its winning times and
learning extent of each time. It can be seen that the more times a
seed point has won in the past, the more reliability it will
accumulate. Consequently, the confidence coefficient Ec of the
winner mc can be given by

Ec ¼minð1;RcÞ ¼minð1;η � ncÞ: ð5Þ
That is, the value of Ec will gradually increase over Rc and the
maximum is 1, which means a full confidence. Subsequently, the
number of cooperators owned by a winner can be determined by
its confidence coefficient Ec.

Suppose there are q seed points which have intruded into the
winner's territory, then the number of cooperators qu can be
calculated by

qu ¼ ⌊q � Ecc ¼ ⌊q �minð1;η � ncÞc; ð6Þ
where ⌊�c denotes the floor function. It implies that the number of
cooperators will never exceed the number of interlopers in the
winner's territory. Furthermore, if Ec is equal to 0, no seed point
will cooperate with the winner any more because it has no
reliability.

In the proposed learning model, the competitor nearest to
the winning seed point has the priority to be a cooperator of the
winner. Specifically, if qu is equal to 1, the seed point that is the
nearest to the winner will cooperate with the winner. Additionally,
if qu is equal to 2, the top two competitors with the smallest
distance to the winner will be chosen as the cooperators. Subse-
quently, all of the other non-cooperating intruders in the winner's

territory will be penalized. Hence, the number of penalized seed
points, denoted as qp, is determined by

qp ¼ q�qu ¼ q�⌊q �minð1;η � ncÞc ¼ ⌈q �maxð0;1�η � ncÞ⌉; ð7Þ
where ⌈ � ⌉ means the ceiling function. Evidently, the winning
times of each seed point are very few at the initial stage, i.e. qu¼0
and qp ¼ q. As a result, all the seed points which have fallen into
the winner's territory will be penalized. Later, the power of
cooperation will escalate over time, meanwhile the penalization
region will be gradually reduced. In other words, at the earlier
stage of CPCL model, the penalization mechanism plays a leading
role, which makes the initial seed points drift in the input space to
find a more appropriate cluster center. Later, the cooperation
gradually becomes strengthened over time while the penalization
is weakened. This makes all the seed points converge to the
corresponding cluster centers gradually.

After determining the cooperating team and penalized team at
time t, each cooperator, denoted as mu, will be updated by

mðtÞ
u ¼mðt�1Þ

u þηρuðxt�mðt�1Þ
u Þ; ð8Þ

where

ρu ¼
Jmðt�1Þ

c �xt J
maxðJmðt�1Þ

c �xt J ; Jmðt�1Þ
u �xt J Þ

: ð9Þ

It can be seen that all the cooperative seed points are updated with
a movement towards the point xt , but the strength of their
adjustment is individually based on the distance between a
cooperator and the current input xt . Since we have a frequency
factor γ involving in Eq. (1) when selecting the winning seed, the
nearest seed point to xt is not always the winner. Therefore, the
“max” function in Eq. (8) is needed. We can find that a cooperator
will have a full learning strength as Jmðt�1Þ

u �xt Jr Jmðt�1Þ
c �xt J ,

i.e. the ratio ρ in Eq. (8) is equal to 1. Otherwise, the learning
strength is gradually reduced over the distance between a coop-
erator and xt .

Meanwhile, the other penalized seed points in the winner's
territory, denoted as mp, will be penalized with a dynamical
penalizing rate:

mðtÞ
p ¼mðt�1Þ

p �η
Jmðt�1Þ

c �xt J
Jmðt�1Þ

p �xt J
ðxt�mðt�1Þ

p Þ: ð10Þ

That is, all the penalized seed points will be moved away from xt .
The closer the seed point is to xt , the more penalization it will
suffer from.

2.2. The CPCL algorithm

Following the description of Section 2.1, the CPCL algorithm for
data clustering can be summarized as Algorithm 1. In the algo-
rithm, e stands for the update of all seed points between two
consecutive iterations, which is calculated by

e¼ ∑
k

j ¼ 1
JmðTÞ

j �mðT�1Þ
j J2: ð11Þ

ε is a very small number and erε indicates the convergency of all
seed points. T stands for the current number of learning epochs,
i.e. the times that the whole data set has been scanned. During our
experiments, the value of ε has been set at 10�5.

Algorithm 1. Cooperative and Penalized Competitive Learning
(CPCL).

1: Input: data set X, learning rate η and an initial value of k

(kZkn)
2: Output: cluster label Y ¼ fy1; y2;…; yNg and cluster

number kn

Fig. 1. The territory of the winner mc , indicated by a shadow circle, in the
competition with the other seed points as given an input xt .

H. Jia et al. / Pattern Recognition 47 (2014) 3060–30693062



3: Randomly initialize the k seed points, denoted as

fmð0Þ
1 ;mð0Þ

2 ;…;mð0Þ
k g. Set nð0Þ

j ¼ 1 with j¼ 1;2;…; k, and t¼1.

4: repeat
5: for i¼1 to N do
6: Calculate IðjjxiÞ by Eq. (1) and determine the winning

unit mðt�1Þ
c .

7: Let Sc be the set of seed points fallen into the territory

of mðt�1Þ
c . Set Sc ¼∅, and then we add mðt�1Þ

j

(jAf1;2;…; kg, jac) into Sc if it satisfies Eq. (3).
8: Sort the units in Sc as fm0ðt�1Þ

1 ;m0ðt�1Þ
2 ;…;m0ðt�1Þ

q g
such that
Jm0ðt�1Þ

1 �mðt�1Þ
c Jr Jm0ðt�1Þ

2 �mðt�1Þ
c Jr⋯r Jm0ðt�1Þ

q �mðt�1Þ
c J ,

where q¼ jScj.
9: Select a subset Su of Sc to form a cooperating team of

mðt�1Þ
c , where Su ¼ fm0ðt�1Þ

1 ;m0ðt�1Þ
2 ;…;m0ðt�1Þ

qu g and qu is
calculated by Eq. (6). Then update all members in Su by
Eq. (8).

10: Let Sp ¼ Sc�Su, then penalize all seed points in Sp by
Eq. (10).

11: Update the winner mc by

mðtÞ
c ¼mðt�1Þ

c þ η � ðxi�mðt�1Þ
c Þ: (12)

12: Update nc by nðtÞ
c ¼ nðt�1Þ

c þ1, and increase t by 1.
13: end for
14: until erε or TZTmax

To illustrate the learning process of CPCL algorithm, we have
applied it to a set of data from a mixture of three Gaussian
densities as shown in Fig. 2. Five seed points were initialized in the
input space and their positions are marked by ○ in the figure. After
the convergency of CPCL, the three clusters were identified and the
learned positions of cluster centers have been marked by ⋆ for
visualization. Moreover, the trajectories of seed points during the
training process have been depicted with the solid lines in Fig. 2,
which illustrate how the true cluster number is learned. Addition-
ally, a snapshot of the convergent positions of five seed points is as
follows:

m1 ¼ ð1:0286;0:9578ÞT ; m2 ¼ ð0:9791;2:4587ÞT ;
m3 ¼ ð0:9791;2:4587ÞT ;m4 ¼ ð2:5180;2:4980ÞT ;

m5¼ ð2:5180;2:4980ÞT :
Evidently, m2 and m3 have converged to the same cluster center,
meanwhile, m4 and m5 have overlapped in another cluster center.
Therefore, based on the learning result of CPCL algorithm, the
number of seed points with different positions is exactly the
cluster number.

2.3. Comparisons between CPCL and existing counterparts

As described in Section 2, the proposed CPCL method synchro-
nously implements two different kinds of competitive mechanisms:
cooperation and penalization, which have been individually
adopted by some existing methods. Therefore, in this part, we will
analyze the characteristic of CPCL approach and discuss the simila-
rities and differences between it and other existing counterparts.

The key common ground between CPCL and the cooperative
learning methods, i.e. CCL [12] and CCCL [13] algorithms, is that they
both converge all seed points within the input space to the
corresponding cluster centers without pushing anyone away. It can
be seen that the CPCL will degenerate to the CCCL method with the
parameter φ¼ 1 if the winning seed point mc is always full reliable
at any time, i.e. Ec¼1 and qu ¼ q. Nevertheless, the penalization
mechanism in CPCL generally offers the seed points more opportu-
nities to wander in the clustering space and search for a more
appropriate cluster center. As a result, the CPCL is more insensitive to
the overlapping level of clusters and the initialization of the seed
points in comparison with the purely cooperative learning methods.

Compared to the existing penalized learning methods, such as
RPCL [7] and DSRPCL [10], the proposed CPCL method has implemen-
ted the penalization strategy in a different way. Specifically, the
penalized seed points in CPCL are the ones that locate close to the
winner and have fallen into the defined winner's territory, but not the
second winner that adopted in the rival penalized learning methods.
This is because the goal of penalizing operation in CPCL is to disperse
the seed points located around the winner and let them have a
sufficient exploration in the clustering space during the early stage of
the learning process. By contrast, the penalization in other existing
methods is to drive the redundant seed points away from the input
space. Under this new strategy, if there is a seed point which is very
close to the input sample but has not fallen into current winner's
territory, it will not be penalized but has the opportunity to be a
winner during the following learning procedures in that the winning
chance of each seed point is restrained by its winning times. Moreover,
in the CPCL algorithm, the penalization mechanism will work only in
the beginning period and be gradually faded out over time. Hence, in
the anaphase, the trajectories of all seed points will have a good
convergent behavior under the domination of cooperation strategy.

Besides, another penalized learning model in the literature
called CoRe [11] also allows multiple winners and losers during
each learning iteration. However, the competitive strategies and
learning process of CoRe and CPCL are totally different. In each
iteration of CoRe algorithm, all the seed points are partitioned into
winners and losers based on the similarities between them and
the given data point with a predefined threshold. During the
implementation of CoRe, this threshold is suggested to be set at
0.9. Under this constraint, in most cases only one seed point will
be assigned to the winner set, and all the other seed points are
penalized. By contrast, the CPCL determines the cooperators and
penalized losers in a self-adapting way and all the seed points
have three kinds of situations in each iteration: cooperative,
penalized, and unaltered. Furthermore, since CoRe has large
penalization range and strength, it needs a sufficiently large value
for initial k. By contrast, the proposed CPCL is effective with kZkn.

Moreover, since the winning seed point in the CPCL algorithm
chooses some cooperators meanwhile penalizes the other competitors,

0 1 2 3 4

0

1

2

3

4

Fig. 2. An illustration of the learning process of CPCL algorithm on the data coming
from a mixture of three Gaussian densities, where ‘○’ marks the initial positions of
seed points, ‘⋆’ represents the cluster centers learned by CPCL, and the solid lines
depict the trajectories of seed points.
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this method is expected to have a good convergence speed.
For example, as shown in Fig. 3, the seed point m1 is chosen as a
cooperator while m2 is penalized. It can be observed that, while the
winner and m1 are adjusted adaptively to xt , m2 is pushed away
from this cluster area and moves towards another cluster center.
The synergy of these two different kinds of moving trends can make
the seed points converge to the corresponding cluster centers more
quickly. The numerical results in the experiment section will show the
promising characteristic of the CPCL method.

3. CPCL for kernel-based clustering

To solve the cluster number selection problem in kernel-based
clustering, this section introduces the cooperative and penalized
competitive learning mechanism into the online version of kernel
k-means clustering framework. Subsequently, a novel clustering
algorithm which can conduct a nonlinear partition on the input data
set without knowing exact number of clusters will be presented.

3.1. Kernel-based competitive learning

Given the data set X ¼ fx1; x2;…;xNg with xiARd, the Mercer
kernel K : X � X-R can be expressed as

Kðxi; xjÞ ¼ΦðxiÞ �ΦðxjÞ; 8 i; jAf1;2;…;Ng: ð13Þ
Here, Φ : X-F maps the original space X to a high dimensional
feature space F . The clustering in feature space is to find k centers
(i.e., mΦ

j AF with j¼ 1;2;…; k), which partition the mapped
patterns into different groups such that the summation of dis-
tances between each center and its cluster members in feature
space is minimized. Generally, each center mΦ

j can be written as a
combination of the mapped patterns [16]. Accordingly, we have

mΦ
j ¼ ∑

N

i ¼ 1
αjiΦðxiÞ; ð14Þ

where αji is a non-negative coefficient. Subsequently, based on the
kernel trick [16,21], the squared distance between a mapped
pattern ΦðxiÞ and a center mΦ

j can be calculated by

JΦðxiÞ�mΦ
j J2 ¼ JΦðxiÞ� ∑

N

t ¼ 1
αjtΦðxtÞJ2

¼ Kðxi; xiÞ�2 ∑
N

t ¼ 1
αjtKðxi; xtÞþ ∑

N

r;s ¼ 1
αjrαjsKðxr ;xsÞ:

ð15Þ

For the competitive learning method, given a data point xt each
time, the winner mΦ

c among k centers is determined by

c¼ arg min
1r jrk

fγj JΦðxtÞ�mΦ
j J2g; ð16Þ

where γj is the relative winning frequency of mΦ
j . Synthesizing

Eqs. (15) and (16), we can get

c¼ arg min
1r jrk

γj ∑
N

r;s ¼ 1
αjrαjsKðxr ; xsÞ�2 ∑

N

i ¼ 1
αjiKðxt ; xiÞ

" #( )
: ð17Þ

Subsequently, xt is assigned to the winning cluster and the
corresponding cluster center is updated with

mΦðtÞ
c ¼mΦðt�1Þ

c þηðΦðxtÞ�mΦðt�1Þ
c Þ; ð18Þ

where η is a small learning rate. Substituting Eq. (14) into Eq. (18)
yields

∑
N

i ¼ 1
αðtÞ
ci ΦðxiÞ ¼ ∑

N

i ¼ 1
αðt�1Þ
ci ΦðxiÞþηΦðxtÞ�η ∑

N

i ¼ 1
αðt�1Þ
ci ΦðxiÞ

¼ ð1�ηÞ ∑
N

i ¼ 1
αðt�1Þ
ci ΦðxiÞþηΦðxtÞ: ð19Þ

Therefore, the updating of winning center mΦ
c can be handled

indirectly by updating the coefficient αci according to

αðtÞ
ci ¼

ð1�ηÞαðt�1Þ
ci if iat;

ð1�ηÞαðt�1Þ
ci þη otherwise:

8<
: ð20Þ

3.2. Implementation of cooperation and penalization mechanisms

To automatically learn the true number of clusters, we introduce
the cooperation and penalization mechanisms presented above into
the competitive learning framework and propose a new algorithm
which can conduct kernel-based clustering without knowing exact
cluster number. Specifically, once the winnermΦ

c is selected, the other
cluster centers which have fallen into its territory will be dominated
by it. That is, any center mΦ

j (jac) satisfies

JmΦ
c �mΦ

j J2r JmΦ
c �ΦðxtÞJ2 ð21Þ

will cooperate with the winner or be penalized by it. Based on
Eqs. (14) and (15), Eq. (21) can be rewritten as

∑
N

r;s ¼ 1
ðαjrαjs�2αcrαjsÞKðxr ;xsÞrKðxt ; xtÞ�2 ∑

N

i ¼ 1
αciKðxt ;xiÞ: ð22Þ

Let set SΦc store all the cluster centers which satisfy Eq. (22). Suppose
there are q items in SΦc , then it can be represented as
SΦc ¼ fmΦ

1 ;m
Φ
2 ;…;mΦ

q g. To select the cooperating team, we first sort
the cluster centers in SΦc according to their respective distance to the
winner mΦ

c . When compare the distance, we have

JmΦ
c �mΦ

1 J2r JmΦ
c �mΦ

2 J2

3 J ∑
N

i ¼ 1
αciΦðxiÞ� ∑

N

i ¼ 1
α1iΦðxiÞJ2r J ∑

N

i ¼ 1
αciΦðxiÞ � ∑

N

i ¼ 1
α2iΦðxiÞJ2

3 ∑
N

r;s ¼ 1
ðα1rα1s�2αcrα1sÞKðxr ;xsÞ

r ∑
N

r;s ¼ 1
ðα2rα2s�2αcrα2sÞKðxr ; xsÞ: ð23Þ

Let Δcj ¼∑N
r;s ¼ 1ðαjrαjs�2αcrαjsÞKðxr ; xsÞ, then, the q units in SΦc can

be sorted as fmΦ
10 ;m

Φ
20 ;…;mΦ

q0 g such that

Δc10 rΔc20 r…rΔcq0 : ð24Þ
Subsequently, the cooperating cluster centers are selected in order
from the sorted set and the number of cooperators is determined by
Eq. (6). All the cooperators will be adjusted towards the given data
point with dynamic learning rate according to

mΦðtÞ
u ¼mΦðt�1Þ

u þηρuðΦðxtÞ�mΦðt�1Þ
u Þ; ð25Þ
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Fig. 3. Simultaneous cooperation and penalization in the CPCL approach.
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where

ρu ¼
JmΦðt�1Þ

c �ΦðxtÞJ2
maxðJmΦðt�1Þ

c �ΦðxtÞJ2; JmΦðt�1Þ
u �ΦðxtÞJ2Þ

: ð26Þ

Based on Eq. (14), Eq. (25) can be further rewritten as

αðtÞ
ui ¼

ð1�ηρuÞαðt�1Þ
ui if iat;

ð1�ηρuÞαðt�1Þ
ui þηρu otherwise:

8<
: ð27Þ

The other non-cooperating centers in SΦc will be penalized by the
winner. Correspondingly, the updating formula is given by

mΦðtÞ
p ¼mΦðt�1Þ

p �ηρpðΦðxtÞ�mΦðt�1Þ
p Þ; ð28Þ

where

ρp ¼
JmΦðt�1Þ

c �ΦðxtÞJ2
JmΦðt�1Þ

p �ΦðxtÞj2
: ð29Þ

Substituting Eq. (14) into Eq. (28), we can get

∑
N

i ¼ 1
αðtÞ
pi ΦðxiÞ ¼ ∑

N

i ¼ 1
αðt�1Þ
pi ΦðxiÞ�ηρpΦðxtÞþηρp ∑

N

i ¼ 1
αðt�1Þ
pi ΦðxiÞ

¼ ð1þηρpÞ ∑
N

i ¼ 1
αðt�1Þ
pi ΦðxiÞ�ηρpΦðxtÞ: ð30Þ

Therefore, the updating ofmΦ
p expressed by Eq. (28) is equivalent to

αðtÞ
pi ¼

ð1þηρpÞαðt�1Þ
pi if iat;

ð1þηρpÞαðt�1Þ
pi �ηρp otherwise:

8<
: ð31Þ

3.3. Kernel-based CPCL algorithm

Based on the description given in the former sub-sections, the
cooperative and penalized competitive learning method for kernel-
based clustering analysis can be summarized as Algorithm 2.
Specially, to randomly initialize the k cluster centers in feature space,
we make a random permutation on the order of input data and then
initialize the centers as the first k mapped patterns. That is, we set
αji ¼ δji, where δji ¼ 1 if i¼ j and 0 otherwise. The convergency index
eΦ is calculated by

eΦ ¼ ∑
k

j ¼ 1
JmΦðTÞ

j �mΦðT�1Þ
j J2

¼ ∑
k

j ¼ 1
J ∑

N

i ¼ 1
αðTÞ
ji ΦðxiÞ� ∑

N

i ¼ 1
αðT�1Þ
ji ΦðxiÞJ2

¼ ∑
k

j ¼ 1
∑
N

r;s ¼ 1
αðTÞ
jr α

ðTÞ
js Kðxr ; xsÞ�2 ∑

N

r;s ¼ 1
αðTÞ
jr α

ðT�1Þ
js Kðxr ; xsÞ

"

þ ∑
N

r;s ¼ 1
αðT�1Þ
jr αðT�1Þ

js Kðxr ; xsÞ
#
; ð32Þ

where T�1 and T stand for two sequential learning epochs. More-
over, in our experimental studies, Gaussian kernel has been utilized.
Therefore, we have

Kðxr ; xsÞ ¼ exp � Jxr�xs J2

2s2

 !
; ð33Þ

where s is a suitable constant.

Algorithm 2. Kernel-based CPCL Algorithm (K-CPCL).

1: Input: data set X, learning rate η and an initial value of k

(kZkn)
2: Output: cluster label Y ¼ fy1; y2;…; yNg and cluster number

kn

3: Randomly initialize the k cluster centers, denoted as

fmΦð0Þ
1 ;mΦð0Þ

2 ;…;mΦð0Þ
k g. Set nð0Þ

j ¼ 1 with j¼ 1;2;…; k, and

t¼1.
4: repeat
5: for i¼1 to N do
6: Determine the winning unit mΦðt�1Þ

c according to
Eq. (17).

7: Let SΦc ¼∅, and then add mΦðt�1Þ
j (jAf1;2;…; kg, jac)

into SΦc if it satisfies Eq. (22).
8: Sort the units in SΦc according to Eq. (24).
9: Select a subset SΦu of SΦc to form a cooperating team

and update all members in SΦu by Eq. (27).
10: Let SΦp ¼ SΦc �SΦu , then penalize all centers in SΦp by

Eq. (31).
11: Update the winner mΦ

c by Eq. (20).
12: Update nc by nðtÞ

c ¼ nðt�1Þ
c þ1, and increase t by 1.

13: end for
14: until eΦrε or TZTmax

4. Experimental results

In this section, we present the experimental results of the proposed
cooperative and penalized competitive learning method on real data
sets in comparisonwith some existing counterparts. Each algorithm in
the experiments was coded with MATLAB and all experiments were
implemented by a desktop PC computer with Intel(R) Core(TM)2 Quad
CPU, 2.40 GHz main frequency, and 4GB DDR2 667 RAM.

Since the true labels of tested data sets in our experiments are
available, according to [6], the performance of clustering algo-
rithms with capability of cluster number selection can be evalu-
ated by following Partition Quality (PQ) index:

PQ ¼
∑kn

i ¼ 1∑
k0
j ¼ 1½pði;jÞ

2 �ðpði;jÞ=pðjÞÞ�
∑kn

i ¼ 1pðiÞ
2 if k041;

0 otherwise;

8<
: ð34Þ

where kn is the true number of classes and k0 is the cluster number
learned by the algorithm. The term pði; jÞ calculates the frequency-
based probability that a data point is labeled i by the true label and
labeled j by the obtained label. This PQ metric achieves the
maximum value 1 when the obtained labels induce the same
partition as the true ones. That is, all data points in each cluster
have the same true label and the estimated k0 is equal to kn.
Additionally, we have also utilized the Rand Index (RI) to measure
the clustering accuracy for reference, which is given by

RI¼ TPþTN
TPþFPþFNþTN

; ð35Þ

where TP, TN, FP, and FN stand for true positive, true negative, false
positive, and false negative, respectively.

4.1. Performance of CPCL algorithm

4.1.1. Experiments on low dimensional data
This sub-section demonstrates the effectiveness of CPCL algorithm

on three data sets: Seeds,Wine, andWisconsin Diagnostic Breast Cancer
(WDBC), with relatively low dimensionality obtained from UCI
Machine Learning Data Repository.1 For comparative studies, the
results of CPCL algorithm have been compared with four existing
methods, which are DSRPCL [10], RPCCL [8], CoRe [11], and CCCL [13]
algorithms. These competitive learning algorithms have been executed

1 http://archive.ics.uci.edu/ml/
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with different settings of k and repeated 20 times in each case on
every data set. The learning rate η of CPCL, RPCCL, and CCCL
algorithms was set at 0.001 and in the CCCL method, the parameter
φ was set at 0.5 according to [13]. For the RPCCL algorithm, we
assigned a large number of learning epochs to let the extra seed points
be sufficiently penalized. Moreover, for the CoRe method, we have
selected a relatively good value for the most important parameter α
from different trials in each experiment, and the settings of other
parameters are consistent with the author's instructions.

In the dataset of Seeds, it has 210 instances with 7 attributes. All
the instances are equally distributed into three varieties of wheat:
Kama, Rosa and Canadian. Table 1 records the average values obtained
by different clustering algorithms under variant evaluation criteria,
including number of clusters, Partition Quality, Rand Index, running
time, and number of learning epochs. From the results, we can find
that CPCL has given a good estimate for the cluster number and
obtained the best partition quality in each testing case. By contrast, the
RPCCL method performed well when the initial k was slightly larger
than the true one, i.e. k¼4, but tended to be dragged into incorrect
convergence when k was set much larger than kn. It also can be
observed that the partition quality of CoRe algorithm improved as the
value of initial k increased. This phenomenon verifies that CoRe
method needs a sufficiently large k to achieve a satisfying result.
However, larger k also means heavier computation as shown in the
statistic information of running time and epoch numbers.

In the dataset of Wine, it contains 178 instances from 3 types of
wines. Each instance is described by 13 attributes. The numbers of
instances in the three true classes are 59, 71, and 48, respectively.
The clustering results obtained by different algorithms under
variant settings have been summarized in Table 2. Referring to
the obtained average value of cluster numbers, we can find that
only the CPCL algorithm has given out an accurate estimate on the
number of clusters in every situation we have tried. However, the
clustering accuracies of cooperatively convergent algorithms are
not as good as the purely penalized ones on this data set. Hence,
the best Rand Index has been obtained by some other method in
each case. When the initial k was set approaching to kn, DSRPCL
algorithm got the highest clustering accuracy. Nevertheless, the
extra cluster had not been eliminated by it. Subsequently, when k
was set at 10, the RPCCL obtained the highest RI value although its
performance on cluster number estimate had degraded. As the
value of k further increased, the performance of CoRe become
much better. And when k¼20, the CoRe obtained the best results,
meanwhile, the CPCL's performance was in second place. It can be
observed from the whole results that the performance of CPCL is
much more robust to the settings of k.

As for the WDBC dataset, it contains 569 instances, whose 30
features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. 357 instances of them have the
diagnosis of benign while the other 212 samples are regarded as
malignant. From the summarized results in Table 3, we can find
that the performance of CPCL algorithm is superior to all the other
algorithms on this data set. Compared to the CCCL, which also had
satisfying performance in this experiment, the CPCL converged
more quickly and obtained better average partition quality with
lower standard deviation. Moreover, since the sample size of
WDBC data is much larger than the previous two data sets, the
average computation load in each learning epoch of CoRe algo-
rithm had an obvious increase, which implies that the running
time of CoRe algorithm tends to be more sensitive to the sample
size than that of the other methods.

4.1.2. Experiments on high dimensional data
In this sub-section, we further investigate the performance of

CPCL algorithm on other data sets with higher dimensionality in
comparison with the four counterparts. The utilized data sets are
Sonar,1 Control Chart1, Multiple Features1, and MNIST.2 Table 4 has
also given the basic information of them. For simplicity, the initial

Table 1
Clustering results on the Seeds data set (kn ¼ 3).

k Methods #Clusters PQ RI Time (#Epochs)

4 DSRPCL 470.0 0.6623 0.8628 0.36 (94.85)
RPCCL 2.9570.22 0.6849 0.8499 0.91 (100)
CoRe 2.170.31 0.5794 0.7593 1.04 (19.5)
CCCL 2.8570.81 0.6273 0.8095 0.71 (77.35)
CPCL 3.2570.55 0.6922 0.8635 0.56 (49.5)

10 DSRPCL 8.2571.12 0.3146 0.7673 1.61 (187.2)
RPCCL 8.8571.18 0.3718 0.7763 9.06 (500)
CoRe 2.4570.51 0.6385 0.8028 2.13 (28.75)
CCCL 3.570.82 0.6536 0.8442 3.68 (189.5)
CPCL 3.2570.58 0.7302 0.8840 2.55 (110.9)

20 DSRPCL 17.0571.57 0.2020 0.7311 4.87 (296.15)
RPCCL 18.371.03 0.1783 0.7200 33.72 (1000)
CoRe 2.770.47 0.6738 0.8342 3.69 (39.7)
CCCL 3.770.92 0.6437 0.8329 13.71 (368.5)
CPCL 3.170.45 0.7332 0.8771 7.33 (168.3)

Table 2
Clustering results on the Wine data set (kn ¼ 3).

k Methods #Clusters PQ RI Time (#Epochs)

4 DSRPCL 470.0 0.7502 0.8977 0.46 (125.35)
RPCCL 2.870.52 0.6686 0.8147 0.91 (100)
CoRe 2.370.65 0.5023 0.7082 1.52 (26.5)
CCCL 3.4570.60 0.5520 0.7567 0.44 (55.15)
CPCL 3.1570.58 0.6917 0.8332 0.65 (57.85)

10 DSRPCL 8.0570.99 0.4029 0.7941 1.73 (235.5)
RPCCL 7.871.51 0.5674 0.8357 9.41 (500)
CoRe 2.670.55 0.6431 0.8156 3.14 (39.2)
CCCL 3.8571.18 0.5224 0.7602 1.61 (94.35)
CPCL 3.2570.63 0.6382 0.8049 2.15 (93.26)

20 DSRPCL 2070.0 0.2091 0.7276 5.36 (324.1)
RPCCL 18.6570.93 0.2070 0.7238 35.15 (1000)
CoRe 2.9570.51 0.6938 0.8503 3.59 (39.5)
CCCL 4.2571.21 0.4927 0.7535 6.80 (176.55)
CPCL 3.2570.88 0.6316 0.8196 6.43 (145.65)

Table 3
Clustering results on the WDBC data set (kn ¼ 2).

k Methods #Clusters PQ RI Time (#Epochs)

3 DSRPCL 370.0 0.6248 0.7553 0.47 (55.5)
RPCCL 1.8570.36 0.4781 0.5553 2.11 (100)
CoRe 2.1570.93 0.2664 0.5964 8.03 (26.2)
CCCL 2.1570.36 0.7573 0.8321 0.72 (23.5)
CPCL 270.0 0.7725 0.8415 0.69 (20.4)

10 DSRPCL 9.770.47 0.2111 0.5774 5.46 (225.8)
RPCCL 5.972.05 0.5136 0.6984 26.29 (500)
CoRe 2.671.31 0.2931 0.5719 23.51 (61.20)
CCCL 1.9570.22 0.7215 0.8177 4.71 (47.15)
CPCL 270.0 0.7551 0.8298 2.63 (39.35)

20 DSRPCL 19.9570.22 0.1228 0.5311 20.99 (457.3)
RPCCL 15.2571.86 0.1925 0.5629 96.67 (1000)
CoRe 3.170.91 0.3290 0.6126 49.51 (107.15)
CCCL 1.9570.22 0.7267 0.8211 15.62 (82.05)
CPCL 2.0570.22 0.7582 0.8306 7.97 (63.7)

2 http://www.cs.nyu.edu/roweis/data.html
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number of clusters k is set at not less than twice the true one in
this experiment. The average clustering results of different algo-
rithms from 20 trials on each data set have been summarized in
Tables 5–8.

It can be observed from these tables that the proposed CPCL
algorithm has given the most approximate estimate for the
number of clusters on each utilized data set. Although in some
cases, the Rand Index value obtained by CPCL is not the best one,
its Partition Quality result is superior to the other counterparts.
This indicates that, for the data sets with relatively higher
dimensionality, the CPCL algorithm also has a good ability in
clustering analysis without knowing cluster number as it can
simultaneously learn the cluster number and cluster membership
well. Moreover, for the Multiple Features and MNIST data sets with
both of large sample size and high dimensionality, the running
time of CPCL algorithm is still acceptable. By contrast, the running
time of CoRe algorithm in these two cases is hundreds of times
more than that of others, which is too expensive for practical
application.

4.2. Performance of K-CPCL algorithm

To investigate the performance of K-CPCL algorithm, we
applied it to four benchmark data sets, i.e., Sonar1, USPS49,3

Pendigit1, and Multiple Features1, and compared its results to that
obtained by standard kernel k-means method [16]. The general
information of the four data sets along with the chosen value of s
in the Gaussian kernel function for each data set has been given in
Table 9. In the experiments, each algorithm has executed 20 times
under different settings of k. The learning rate η in K-CPCL
algorithm was set at 0.0001. Partition Quality (PQ) and Rand Index
(RI) were utilized to evaluate the clustering accuracy and the
learnt number of clusters under each situation has also been
recorded for comparison.

Table 10 shows the clustering results obtained in this experi-
ment. From the table, we can find that when the cluster number
was initialized equal to the true value, the performance of K-CPCL
algorithm matched that of kernel k-means method. However,
when the initial value of cluster number was set much larger than
the true one, the performance of kernel k-means degraded
significantly because it cannot recognize the extra clusters. In
the experiment, the cluster number learnt by kernel k-means was
sometimes less than the setting value is due to the generation of
empty clusters. By contrast, the proposed K-CPCL algorithm can
give a good estimate of the cluster number during the clustering

Table 4
Basic information of utilized data sets with higher dimensionality.

Data set N d kn

Sonar 208 60 2
Control chart 600 60 6
Multiple features 2000 649 10
MNIST 5000 784 10

Table 5
Clustering results on the Sonar data set (kn ¼ 2).

k Methods #Clusters PQ RI Time (#Epochs)

5 DSRPCL 4.770.67 0.1591 0.5040 0.68 (130.4)
RPCCL 3.570.85 0.1934 0.5009 2.27(200)
CoRe 1.6571.26 0.0331 0.5004 6.84 (32.6)
CCCL 2.570.71 0.2306 0.5032 0.92 (48.45)
CPCL 2.270.42 0.2534 0.5058 0.84 (42.15)

Table 6
Clustering results on the Control Chart data set (kn ¼ 6).

k Methods #Clusters PQ RI Time (#Epochs)

15 DSRPCL 12.471.14 0.3288 0.8503 19.01 (386.55)
RPCCL 7.8570.79 0.4161 0.8359 39.84 (500)
CoRe 9.4571.43 0.3671 0.8727 80.57 (40.1)
CCCL 2.570.51 0.3741 0.7559 11.25 (93.15)
CPCL 5.3570.61 0.4603 0.8618 12.58 (98.2)

Table 7
Clustering results on the Multiple Features data set (kn ¼ 10).

k Methods #Clusters PQ RI Time (#Epochs)

20 DSRPCL 2070.0 0.2021 0.8765 13.29 (56.25)
RPCCL 14.7570.21 0.2116 0.8748 372.71 (500)
CoRe 6.2571.56 0.1528 0.7864 66545.3 (40.6)
CCCL 7.070.54 0.2251 0.8476 197.69 (208.55)
CPCL 8.270.71 0.2577 0.8624 203.12 (201.5)

Table 8
Clustering results on the MNIST data set (kn ¼ 10).

k Methods #Clusters PQ RI Time (#Epochs)

20 DSRPCL 2070.0 0.1834 0.8969 246.87 (109.25)
RPCCL 12.8571.42 0.2175 0.8245 1004.16 (500)
CoRe 7.2571.83 0.1694 0.7835 267285.36 (52.65)
CCCL 4.772.36 0.1087 0.7552 362.71 (158.25)
CPCL 8.7571.03 0.2408 0.8258 416.79 (176.8)

Table 9
Main statistics of utilized data sets.

Data set N d kn s

Sonar 208 60 2 2
USPS49 1673 256 2 10
Pendigit 3498 16 10 100
Multiple features 2000 649 10 2500

Table 10
Clustering results obtained by K-CPCL and kernel k-means methods.

Data set k Methods #Clusters PQ RI

Sonar 2 Kernel k-means 2.070.0 0.2627 0.5032
K-CPCL 2.070.0 0.2668 0.5006

5 Kernel k-means 5.070.0 0.1233 0.5034
K-CPCL 2.570.43 0.2315 0.5047

USPS49 2 Kernel k-means 2.070.0 0.4867 0.6561
K-CPCL 2.070.0 0.4779 0.6485

5 Kernel k-means 5.070.0 0.2223 0.5795
K-CPCL 2.3570.63 0.4463 0.6329

Pendigit 10 Kernel k-means 9.870.52 0.4504 0.9122
K-CPCL 9.6570.42 0.4438 0.9015

20 Kernel k-means 18.370.80 0.4344 0.9347
K-CPCL 11.771.06 0.4556 0.9070

Multiple features 10 Kernel k-means 7.271.15 0.2805 0.8621
K-CPCL 9.570.44 0.3121 0.8875

20 Kernel k-means 13.871.34 0.2863 0.8882
K-CPCL 10.770.85 0.3316 0.8965

3 http://www-stat.stanford.edu/tibs/ElemStatLearn/data.html
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process. Therefore, the superiority of K-CPCL method is more
obvious in unsupervised clustering analysis without knowing true
cluster number.

Moreover, to investigate the advantage of kernel method, we
further compare the performance of CPCL and K-CPCL algorithms
in Table 11. It can be observed that the cluster number and cluster
membership learnt by the K-CPCL algorithm with kernel method
are more accurate in most cases. Especially, for the USPS49 data
set, the results of K-CPCL are much better than that of the CPCL
method as CPCL algorithm usually converges to only one cluster on
this data set. Therefore, the K-CPCL algorithm is expected to have
more robust performance in unsupervised clustering analysis on
the data sets with complex cluster structure.

5. Conclusion

In this paper, we have presented a novel competitive learning
model named Cooperative and Penalized Competitive Learning
(CPCL), which performs the competition with the two different
kinds of mechanisms simultaneously: cooperation and penaliza-
tion. On one hand, the cooperation mechanism enables the closest
seed points to update together and gradually converge to the
corresponding cluster centers, which gives the algorithm good
convergence speed and high precision. On the other hand, the
penalization mechanism provides the other seed points with the
opportunity to wander in the clustering space, which enables it to
perform the clustering problem with the robustness against the
initialization of the seed points and the overlap of the data
clusters. Furthermore, to solve the cluster number selection
problem in nonlinear clustering, we have introduced the proposed
competition mechanism into kernel clustering framework and
presented a new kernel-based competitive learning algorithm.
Numerical studies have shown the efficacy of the proposed
approach.
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Table 11
Comparing the performance of CPCL and K-CPCL methods.

Data set k Methods #Clusters PQ RI

Sonar 5 CPCL 2.270.42 0.2534 0.5058
K-CPCL 2.570.43 0.2315 0.5047

USPS49 5 CPCL 1.2570.37 0.1072 0.5469
K-CPCL 2.3570.63 0.4463 0.6329

Pendigit 20 CPCL 7.3571.36 0.3452 0.8537
K-CPCL 11.771.06 0.4556 0.9070

Multiple features 20 CPCL 8.270.71 0.2577 0.8624
K-CPCL 10.770.85 0.3316 0.8965

H. Jia et al. / Pattern Recognition 47 (2014) 3060–30693068

http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref1
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref1
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref2
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref2
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref2
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref3
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref3
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref5
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref5
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref7
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref7
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref7
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref8
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref8
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref8
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref9
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref9
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref9
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref10
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref10
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref10
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref11
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref11
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref11
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref14
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref14
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref15
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref15
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref16
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref16
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref17
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref17
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref20
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref20
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref21
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref21
http://refhub.elsevier.com/S0031-3203(14)00108-3/sbref21


Jiming Liu is Chair Professor in Computer Science and Associate Dean of Faculty of Science at Hong Kong Baptist University. He is a Fellow of the IEEE. Prof. Liu received his
M.Eng. and Ph.D. degrees from McGill University in Montreal, Canada. His current research focuses on Data Mining and Data Analytics, Multi-Agent Computing, Collective
Intelligence, Health Informatics, and Computational Epidemiology. Prof. Liu has served as the Editor-in-Chief of Brain Informatics: Brain Data Computing and Health Studies
(Springer) and Web Intelligence and Agent Systems (IOS), and an Associate Editor of IEEE Transactions on Knowledge and Data Engineering, IEEE Transactions on
Cybernetics, Big Data and Information Analytics (AIMS), Computational Intelligence (Wiley), and Neuroscience and Biomedical Engineering (Bentham), among others.

H. Jia et al. / Pattern Recognition 47 (2014) 3060–3069 3069


	Cooperative and penalized competitive learning with application to kernel-based clustering
	Introduction
	Cooperative and penalized competitive learning (CPCL) approach
	Cooperation and Penalization Mechanisms in CPCL
	The CPCL algorithm
	Comparisons between CPCL and existing counterparts

	CPCL for kernel-based clustering
	Kernel-based competitive learning
	Implementation of cooperation and penalization mechanisms
	Kernel-based CPCL algorithm

	Experimental results
	Performance of CPCL algorithm
	Experiments on low dimensional data
	Experiments on high dimensional data

	Performance of K-CPCL algorithm

	Conclusion
	Conflict of interest
	Acknowledgment
	References




