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A New Distance Metric for Unsupervised
Learning of Categorical Data
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Abstract—Distance metric is the basis of many learning
algorithms, and its effectiveness usually has a significant influence
on the learning results. In general, measuring distance for numer-
ical data is a tractable task, but it could be a nontrivial problem
for categorical data sets. This paper, therefore, presents a new
distance metric for categorical data based on the characteristics
of categorical values. In particular, the distance between
two values from one attribute measured by this metric is deter-
mined by both the frequency probabilities of these two values and
the values of other attributes that have high interdependence with
the calculated one. Dynamic attribute weight is further designed
to adjust the contribution of each attribute-distance to the
distance between the whole data objects. Promising experimental
results on different real data sets have shown the effectiveness of
the proposed distance metric.

Index  Terms— Attribute  interdependence, categorical
attribute, clustering analysis, distance metric, unsupervised
learning.

I. INTRODUCTION

EASURING the distance or dissimilarity between

two data objects plays an important role in many
data mining and machine learning tasks, such as cluster-
ing, classification, recommendation system, outlier detection,
and so on. In general, distance computation is an embed-
ded step for these learning algorithms, and different metrics
can be conveniently utilized. However, the effectiveness of
adopted distance metric usually has a significant influence
on the performance of the whole learning method [1]-[3].
Therefore, it becomes a key research issue to present
more appropriate distance metrics for the various learning
tasks.

For purely numerical data sets, the distance computation
is a tractable problem as any numerical operation can be
directly applied. In the literature, a number of distance
metrics and metric learning methods have been proposed for
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TABLE 1
FRAGMENT OF MUSHROOM DATA SET

No. Cap-shape Cap-surface Gill-attachment  Gill-spacing
1 convex smooth free close
2 bell smooth free close
3 convex scaly free close
4 flat fibrous free crowded
5 flat smooth attached close
6 knobbed scaly free close
7 knobbed fibrous free crowded
8 convex smooth attached close
9 knobbed smooth attached close

numerical data. The most widely used metrics in practice
should be the Manhattan distance, Euclidean distance, and
Mahalanobis distance [4]. By contrast, measuring distance
for categorical data can be much more challenging. For
example, Table I shows a fragment of the Mushroom data
set from UCI Machine Learning Repository. It is known that
some of these mushroom samples are edible but some are
poisonous. If we have no information about their categories
and would like to conduct a well partition on them, or given
a wild mushroom, we want to find out which sample from
the database is most similar to it and we have to measure the
difference between these mushroom samples. However, as the
attribute values of this data set are unordered nominal values
rather than numerical ones, the only numerical operation that
can be straightforwardly applied is the identical comparison
operation [5]. Under these circumstances, the popular distance
metrics defined for numerical data cannot work anymore.
In general, the simplest way to overcome this problem is to
transform the categorical values into numerical ones, e.g., the
binary strings [6]—[8], and then, the existing numerical-value-
based distance metrics can be utilized. Nevertheless, such a
kind of method has ignored the information embedded in the
categorical values and cannot faithfully reveal the relationship
structure of the data sets [9], [10]. Therefore, it is desirable
to solve this problem by proposing a distance metric for
categorical data based on the characteristics of categorical
values.

Among the existing works, the most straightforward and
widely used distance metric for categorical data is the
Hamming distance [4], in which the distance between different
categorical values is set at 1, while a distance of 0 is
assigned to identical values. Although the Hamming distance
is easy to understand and convenient for computation, the main
drawback of this metric is that all attribute values have been
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considered equally and the statistical properties of different
values have not been distinguished [1]. For this reason, more
researchers have attempted to measure the distance for
categorical data by considering the distribution characteristics
of categorical values. For example, Cost and Salzberg [11]
proposed a distance metric, namely, modified value difference
metric (MVDM) for supervised learning task. Since true
class label is required by the MVDM, it cannot work in an
unsupervised learning environment. Under the circumstances,
for unsupervised distance measure of categorical data,
Le and Ho [S] presented an indirect method that defines
the distance between two values from one attribute as
the sum of the Kullback-Leibler divergence between con-
ditional probability distributions of other attributes, given
these two values. Similar idea has also been adopted
in [12]. These two methods have assumed that each
attribute can be jointly expressed with all the other
attributes without considering the relevancy between different
attribute pairs. Therefore, Ienco er al. [13], [14] proposed
the concept of context, which is a subset that contains the
attributes that are relevant to the given one. Subsequently, the
distance between two values of an attribute is measured based
on the values of the attributes from current attribute’s context.
Although the relationships between different attribute pairs
have been well taken into account, numerical experiments and
analysis have found that these three kinds of indirectly defined
distance metrics [5], [12], [14] cannot work if the attributes
of the given data set are totally independent of each other.

Besides the aforementioned methods, which directly
propose special distance metric for categorical data sets,
some similarity measures [15]-[23] presented for categorical
or mixed data can also be utilized to quantify the relationship
between different categorical data objects. For example, the
Goodall similarity metric proposed in [15] assigns a greater
weight to the matching of uncommon attribute values than
common values in similarity computation without assuming
the underlying distributions of categorical values. This method
has paid attention to the occurrence frequency of different
values. However, the similarity between two different values
has been defined as a constant 0, which has ignored
the characters of these attribute values. Moreover,
Gowda and Diday [16]-[18] proposed an algebraic method
to measure the similarity between complex data objects.
In this method, the similarity between two attribute values is
defined based on three components: 1) position; 2) span; and
3) content. This similarity measure is applicable for both of
numerical attributes and categorical attributes. Nevertheless,
this method is more suitable for interval-type attribute values.
For a pair of different values with absolute type, which is
common in practice, the similarity between them will always
be quantified by 0. In addition, all these similarity measures
treated the categorical attributes individually and have ignored
the variant attribute relationships.

Furthermore, other than the previously introduced deter-
ministic methods, metric learning is also a useful approach
to acquire a good distance metric for the given data objects.
This technique was first proposed in [24]. Ever since then,
extensive research has been conducted in this area, and
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variant approaches have been presented in the literature.
To overview the details of popular metric learning methods,
one can refer to [25] and [26]. Roughly, the existing metric
learning methods can be grouped into two categories: 1) linear
methods and 2) nonlinear ones. Representative linear
methods include global distance metric learning [24],
neighborhood components analysis [27], large margin near-
est neighbors (LMNN) [28], information theoretic metric
learning [29], and semisupervised metric learning paradigm
with hypersparsity [30]. Besides, typical examples of nonlinear
approaches include the kernelization methods [31]-[33],
neural network-based methods [34], and the Xz—LMNN and
GB-LMNN proposed in [35]. In general, the aforementioned
metric learning methods are proposed for purely numerical
data and cannot be directly applied to the data with categorical
attributes. To solve this problem, He er al. [36] recently
proposed the kernel density metric learning (KDML), which
provides nonlinear, probability-based distance measure, and
can handle not only numerical attributes but also categorical
ones. However, KDML is a supervised method, and the true
class labels should be provided in advance, which restricts its
application in the unsupervised learning environment.

In this paper, we further study the distance measure for
categorical data objects and propose a new distance metric,
which can well quantify the distance between categorical
values in the unsupervised learning environment. This distance
metric takes into account the characteristics of the categorical
values. The core idea is to measure the distance with the
frequency probability of each attribute value in the whole data
set. Moreover, in order to utilize the useful relationship infor-
mation accompanying with each pair of attributes well, the
interdependence redundancy measure [37] has been introduced
to evaluate the dependence degree between different attributes.
Subsequently, the distance between two values from one
attribute is not only measured by their own frequency prob-
abilities but also determined by the values of other attributes
that are highly correlated with this one. In addition, a new kind
of weight named dynamic attribute weight has been presented
to adjust the contribution of distance along each attribute to
the whole object distance. The effectiveness of the proposed
metric has been experimentally investigated on different real
data sets in terms of cluster discrimination and clustering
analysis. The promising results indicate that the proposed
distance metric is appropriate for the unsupervised learning
on categorical data as it can well reveal the true relationship
between categorical objects. The main contributions of our
work can be summarized as follows.

1) A frequency-probability-based distance measure is pro-
posed for the categorical values. This method regards
the situation with O distance as distance origin, and the
distances between other pairs of values are quantified by
comparing with this origin situation.

2) A dynamic weighting scheme for categorical attributes is
presented, which assigns larger weights to the attributes
with infrequent matching or mismatching value pairs as
they can provide more important information.

3) The dependence degree between each pair of
attributes is introduced. The complete distance between
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two categorical values from one attribute is estimated
with not only their own frequency probability but also
the co-occurrent probability of them with other values
from highly correlated attributes.

The rest of this paper is organized as follows. In Section II,
we will overview some existing distance metrics for categor-
ical data. Section III proposes a new distance metric for the
unsupervised learning of categorical data. Then, Section IV
shows the experimental results on real data sets. Finally, the
conclusion is drawn in Section V.

II. OVERVIEW OF EXISTING DISTANCE METRIC

In the literature, researchers have proposed some distance
metrics to quantify the distance between categorical data. This
section will present an overview of them as follows.

A. Hamming Distance

Suppose we have a data set with n objects, expressed as
X = {x1,x2,...,X,}, represented by a set of categorical
attributes {A1, A2, ..., Ag}, where d is the dimensionality
of the data. Each attribute A, can be accompanied by a
value domain dom(A,) (r = 1,2,...,d), which contains
all the possible values that can be chosen by this attribute.
Since the value domains of the categorical attributes are finite
and unordered, the domain of A, with m, elements can be
expressed as dom(A,) = {a,1,a,2,...,a,m,} and for any
a,b € dom(A,), either a = b or a # b [38]. Subsequently,
each object x; can be denoted by a vector (x;1, xj2, ... ,xid)T,
where x; € dom(A,) and T is the transpose operator of a
matrix.

For each pair of categorical data object x; and xj,
i,j €{l,2,...,n}, the Hamming distance [4] between them
is defined as

d
D(xi, xj) = D 6(xir, Xjr) (1)
r=1
with
1, if Xir #Xjr
o(Xir,xiy) = 2
( ir jr) [O, iinr =xjr. ( )

That is, the distance between two different categorical values is
fixed at 1 and the distance between identical values is regarded
as 0. Thus, the Hamming distance between a pair of categorical
data objects will be equal to the number of attributes in which
they mismatch.

B. Modified Value Difference Metric

Cost and Salzberg [11] modified Stanfill and Waltz’s
VDM [39] with a new weighting scheme to make the sym-
metric condition hold. This distance metric is applicable for
supervised learning on categorical data. Based on a training
set X with samples from k different clusters, the distance
between two categorical values of a specific attribute A, is
defined as

k

D(ari, arj)= Y |p(C = t|A; = a;)—p(C = 1|A, =a))|"

t=1
3)
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where r € {1,2,...,d},i,j € {1,2,...,m,}, C stands for
the class label and a is a constant, which is usually set to 1.
p(C = t|A, = a,;) calculates the conditional probability
of C =t given that A, = a,;. Under this metric, two values
are regarded as similar if they occur with the same relative
frequency for all categories. Subsequently, the distance
between two data samples x; and x; is calculated by

d
D(Xi»xj) :wx,-wszD(xir,xjr)y 4
r=1
where X; is a data sample from the training set and x; is a new
sample. The distance between categorical values x; and x,
is given by (3) and the constant y was set at 2 in most cases.
wy; and wy; are the weights assigned to the samples x; and x;,
respectively. In practice, for the new sample X, wy; is set at 1.
For a training sample x;, the weight is assigned according to
its performance history. Usually, accurate sample will have
wy; ~ 1, while unreliable sample will have wy;, > 1 to make
it appear further away from a new sample.

C. Ahmad’s Distance Metric

Ahmad and Dey [12] proposed to calculate the distance
between any two categorical values from one attribute with
respect to all the other attributes. In particular, given the cate-
gorical data set X, the distance between a pair of categorical
values a,; and a,; from attribute A, is defined as

1 d
D(ayi,arj) = m(z D(ayi, ayj, AI)) (t#r) (5
t=1

where r € {1,2,...,d}, i,j € {1,2,...,m;}, and
D(ayi,arj, A;) stands for the distance between a,; and a,;
with respect to attribute A;, which is defined as

D(ayi, arj, A;) = max (p¥i(Q) + p;” (~Q) —1).  (6)

Ari

Here, Q is a subset of dom(A;). p,"” (Q2) denotes the prob-
ability that data objects in X with rth attribute value equal
to a,; has the value contained in Q for attribute A;. pf’j (~Q)
denotes the probability that data objects in X with the rth
attribute value equal to a,; has the value not contained in Q for
attribute A;. In practice, p;" (Q) is calculated by

pr(Q) = D p(Ar = anlAr = ar) @)

alhEQ
and p,” (~Q) is given by

pf’f (~Q) = Z p(A; = amlA, = arj). @)
amn€(~Q)

Let ¥, = max(p?(Q) + p,” (~Q)), according to [40],
the value of 1, and the corresponding value set Q can
be calculated using Algorithm 1. Subsequently, we have
D(a;;, arj, Ay) = 9, — 1.

However, numerical studies have found that if the attributes
of given data set are totally independent of each other accord-
ing to the mutual information criterion [41], this distance
metric cannot work well as the distance between each pair of
attribute values will be quantified as 0. For example, suppose
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Algorithm 1 Calculate ¥, and Q

1: Let ¥, =0 and Q = ¢.

2: for h =1 to m; do

3. if p(Ar = amlAr = ari) > p(Ar = amlAr = arj)

then
4: Add a;, to Q
55 0 =0+ p(Ar = aml|Ar = ayri)
6: else
7: Add a;, to ~Q
8: U =0 + p(Ar = amlAr = ayj)
9: end if
10: end for

TABLE 1T
EXAMPLE OF DATA SET X

Data A1 A2 Ag
X1 E F L
X9 E F M
X3 E H L
X4 E H M
X5 G F L
X6 G F M
X7 G H L
X8 G H M

the data set X is given as Table II. The distance between
categorical values £ and G will be calculated as follows.
1) Get the distance between E and G with respect to
attribute A,

D(E, G, Ay) = max (pF(Q) + plG(NQ) — l)

pEAFH + pl(HY — 1
1 1
= 5 + 5 —1=0.

between E and G with respect to

2) Get the distance
attribute Az

D(E, G, A3) = max (pE(Q) + pf (~Q) — 1)

pEALY + pT((M}) — 1
1 1
= 5 + 5 —1=0.

3) Based on the previous results, we have

D(E,G):%-(O+O):O.

Following the similar procedure, we can further get
D(F,H) =0 and D(L, M) = 0. These results indicate that
Ahmad’s distance metric is not applicable to this kind of data
set as it cannot distinguish different categorical values and data
objects.

D. Association-Based Distance Metric

The association-based distance metric presented in [5] also
utilizes an indirect method to estimate the distance between
categorical values. According to this metric, the distance
between two categorical values of one attribute is indirectly
estimated by the sum of dissimilarities between conditional
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probability distributions of other attributes given these
two values. In particular, for the categorical data set X, the
distance between two values a,; and a,; of attribute A, is
defined as

d
D(ari, arj) = Y w(cpd(AilAr = ari), cpd(AilA, = ar)))
t=1
©)

where r € {1,2,...,d}, i,j € {1,2,...,m;}, and t # r.
cpd(A;|A; = a;i) and cpd(A;|A, = a,;) are conditional
probability distributions. (.,.) is a dissimilarity function
for two probability distributions. In practice, if the
Kullback-Leibler divergence method [42], [43] is utilized as
the dissimilarity measure, D(a,;, ar;) can be calculated by

Dlayi, arj) = Z Z (P(ath|ari)M

by p(anlar))

+P(ath|arj)M) (10)
plawmlar;)
where p(awm|ar;) stands for the conditional probability
p(A; = am|Ar = ayi). Similar to Ahmad’s distance metric,
if all attributes are independent of each other, the distance
between any pair of values will be estimated as 0.

E. Context-Based Distance Metric

To distinguish the different relationships between attributes,
Ienco et al. [13], [14] have proposed the concept of context,
which is a subset of relevant attributes. In practice, the context
of an attribute A,, denoted as context(A,), is determined by
a measure named symmetrical uncertainty (SU). In particular,
for two attributes A, and A;, the SU is calculated by

IG(A,|A))

SUAn A =2 o T HGA)

(1)

where H(A,) and H(A;) are the entropy of attributes
A, and Ay, respectively. IG(A,|A;) is the information gain,
which is given by

IG(A;|A)) = H(A;) — H(A|Ay) (12)
with

H(Ay) = = plari)log(p(ari))

i=1
my my
H(AA) = = playj) D plarilay) log(p(arilai))).
j=l1 i=1
Subsequently, the context of attribute A, is determined by
context(A,) = {A;|t # r,SU(A,, A;) = 0 E[SU4, 1} (13)
with

SU(A,, A
E[SUAr] — Zt,t;érd — r I)
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where ¢ € [0, 1] is a tradeoff parameter. Then, the distance
between two values a,; and a,; of attribute A, is defined as

Z Z (parilam) — P(arj|ath))2-

A; econtext(A,) h=1

D(ari»arj) =

(14)

Since this method is also an indirect one, it still cannot work
well on data with totally independent attributes.

III. PROPOSED DISTANCE METRIC
FOR CATEGORICAL DATA

This section will propose a metric to quantify the distance
between categorical data for unsupervised learning well.
In this new distance metric, the relationship between different
attributes, as well as the characteristics of categorical value,
will be considered.

A. Frequency Probability-Based Distance Metric

Given the data set X = {x1,X2,...,X,} with n objects
represented by d categorical attributes {A1, Aa, ..., Ay}, the
distance between two data objects x; and x; can generally be
calculated by

d
D(xi.X;) = D D(xir. xj»). (15)
r=1

Therefore, the key point is to define the distance between
two categorical values. Given two categorical values
xir and xj, of attribute A, from data objects x; and x;, we
define D(x;, xj;) = 0 if x;; = xj,. This is regarded as the
distance origin and the distance of other situation is estimated
by comparing with this one. This perspective of distance con-
sists with the common distance definition between numerical
objects. In particular, in the numerical space, calculating the
distance between two objects in different positions can be
regarded as to measure how much distance will be taken by the
two objects to get to the same position. Here, the situation that
the two objects reach the same position can also be regarded as
the distance origin, and the difference between the different-
position situation and the distance-origin situation is another
explanation of the distance between the two objects.

Subsequently, we define the distance or the difference
between the situations x;» # xj, and x;; = xj, as the
frequency of situation x;; = x;, in the whole data set. For
two different categorical values x;, and x ., the corresponding
equal situation has two cases: 1) both with value x; and
2) both with value x . For given data set X, the frequency of
the first case is calculated by

u({xir, xir}) = n - p({xir, Xir})

=n-pA, =xi,1X) - p~ (A = xir|X)  (16)

where the frequency probability p(A, = x;|X) is given by

OA,=xj, (X)

p(Ar = xir|X) =
T 04, #NULL(X)

a7)
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and p~ (A, = x;r|X) is calculated by
o4, =x, (X) — 1
o4, #NULL(X) — 1

p (A =xir|X) = (18)
Here, the operation o4,—y; (X) counts the number of objects
in the data set X that have the value x;, for attribute A, and the
symbol NULL refers to the empty. Analogously, the frequency
of the other case is calculated by

u({xjr, xjr}) =n- P({xjra xjr})
=n-p(Ar = x51X) - p(Ar = x,|X). (19)
Since these two cases are exclusive events, we can get that the

frequency of the corresponding equal situation for the pair of
categorical values {x;-, x;} is as follows:

u(xi = xjr) = u({xir, xir}) + u({xjr, xjr})
=n-[p(Ar = xir|X) - p~ (Ar = xir|X)
+p(Ar = xjr|X) -p (A= xjr|X)]~
(20)

Let p(x;; = x;») denote the probability of the equal situation.
Subsequently, we have

p(xir = xjr) = p(A; = xir1X) - p~ (Ar = xir|X)

+p(Ar =xjr|X) - p~ (Ar = xjr|X) (2D

and

uxir = xjr) =n- pXir = xj). (22)

Since u(x;; = xj) is regarded as the difference between the
situation x;- # x;, and the distance origin, i.e., the situation
Xir = Xjr, the distance between the two different categorical
values x; and x;, can be estimated by it. That is

D(xir, Xjr)=n- p(xiy = Xjr), if xir # Xxjr. (23)

Consequently, the distance between categorical values from
one attribute can be defined based on frequency probability as
follows:

o = x5 if x: ,
D(xir,xm:[n pLtir =2y Wt 250 )
0, if xir = xj,
(,2,...,n), r € {1,2,....d}, and

where i,j €
p(xi = xj,) are calculated by (21). Moreover, to avoid
the situation that data sets with different sample sizes will
have different distance scales, we can delete the constant n
in (24) without influencing the distance ranking. Therefore,
the simplified distance metric for categorical values can be
given by

p(xir :xjr), if x;p #xj"

25
0, if Xir = Xjr. ( )

D(xir,xjr) = [

Subsequently, the expression of distance between categorical
data x; and x; can be written as

d
D(xi X)) = D [0(ir xjp)p(xir = xjr)]

r=1

(26)

where the definition of d(x;,, xj,) is given by (2).
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In addition, it can be easily derived that the distance metric
defined by (26) satisfies the following conditions.
1) D(Xi,Xj) > 0.
2) D(x;,x;) =0 if and only if x; = x;.
3) D(Xi,Xj) = D(Xj,Xi).
4) D(x;,x;) < D(x;,x;) + D(x;,x;), where i, j,] €
{1,2,...,n}.

B. Dynamic Attribute Weight

Most existing distance or similarity metrics for categorical
data treat each attribute equally in a data set. However, this
is not always reasonable in practice. For example, when we
compare two objects, we usually pay more attention to the
special features they have. That is, unusual features generally
can provide more important information for the comparison
between objects. Considering this phenomenon, we can further
adjust the previous distance metric according to the follow-
ing criterion. The contribution of the distance between two
attribute values to the whole object distance is inverse to the
probability of these two values’ situation in the whole data
set. That is, if two data objects have different values along
one attribute, then the contribution of the distance between
these two values to the whole data distance is inverse to the
probability that two data objects have different values along
this attribute in the data set, and vice versa. Therefore, this kind
of probability can be utilized as a dynamic weight of attribute
distance. Comparing with the existing attribute weighting
methods, the proposed one has at least three advantages.

1) It is defined based on an individual situation of attribute
value pair, but not the general information of the whole
attribute. Therefore, it has better adjusting ability in
practice.

2) It highlights the infrequent but important matching or
mismatching information, which is consist with the
general criterion in practice.

3) As the distance metric is defined with the frequency
probability of attribute values, this kind of weight can
avoid the domination of values with high frequency.

For an attribute A, with m, possible values, the probability
that two data objects from X have the same value along A, is
calculated by

my

ps(Ar) = Zp(Ar = arj|X)p_(Ar = arjlx)-
=1

27)

Correspondingly, the probability that two data objects from X
have different values along A, is given by

pf(Ar) =1-ps(A)).

Subsequently, following the proposed criterion, the dynami-
cally weighted distance metric should be:

(28)

d
D(x;,x;) = Z [W(Ar)D(xir, xjr)]

r=1
d

= > [@B(A)Sir, xjr) p(xir = xjr)] (29)
r=1
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where w(A,) is the dynamic weight of attribute A,, which is
calculated by

= w(Ay)
w(Ar) = - (30)
Zf:l w(Ar)
with
w(A,) = [1 —pr(Ar), %f Xir # Xjr o
1-— ps(Ar), if Xir = xjr-

That is, if x;» # xj,, the larger the probability pr(A,) is,
the smaller weight will be assigned to the distance along the
attribute A,. Similarly, if x;» = xj,, the contribution of the
distance between them to the data object distance will decrease
as the value of pg(A,) increases. Moreover, since pr(A;) +
ps(A;) =1, (31) can be rewritten as

ps(Ar),
pf(Ar),

if xj # Xjr

. (32)
if Xir = Xjr.

w(Ay) = [

C. Relationship Between Categorical Attributes

In the previous distance metric, the distance along each
attribute has been computed individually. However, in practice,
we often have some attributes that are highly dependent on
each other. Under the circumstances, the computation of simi-
larity or dissimilarity for categorical attributes in the unsuper-
vised learning task should be considered based on frequently
co-occurring items [44]. That is, the distance between
two values from one attribute should be calculated by
considering the other attributes that are highly correlated
with this one. In particular, given the data set X, the
dependence degree between each pair of attributes A;
and A; (i,j € {1,2,...,d}) can be quantified based
on the mutual information [41] between them, which is
defined as

m; I‘nj
plair, ajr)
1(Ai; Aj) = plair, ajr)log (7) (33)
o Z‘Z‘ Y plair)plaji)
Here, the items p(a;;) and p(a;;) stand for the frequency
probability of the two attribute values in the whole data set,
which are calculated by

0 Ai=a;, (X)
ir) = p(Ai = air|X) = ————— 34
plair) = p( air|X) o oL (0) (34)
(X
plap = p(A; = apix) = A=) )

o4;#NULL(X)

The expression p(ai,, aj;) is to calculate the joint probability
of these two attribute values, i.e., the frequency probability
of objects in X having A; = a;, and A; = aj;, which is
given by
plair,aji) = p(Ai = air NAj = ajlX)
O-Al‘ :a,-r/\Aj =aji (X)

= . (36)
O A; #NULLAA, ANULL(X)
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The mutual information between two attributes actually
measures the average reduction in uncertainty about one
attribute that results from learning the value of the other [41].
A larger value of mutual information usually indicates
greater dependence. However, a disadvantage of using this
index is that its value increases with the number of possible
values that can be chosen by each attribute. Therefore,
Au et al. [37] proposed to normalize the mutual informa-
tion with a joint entropy, which yields the interdependence
redundancy measure denoted as

I1(Ai; Aj)

R(Ai;Aj)) = ———= 37
(Ais Aj) H(ALA) (37
where the joint entropy H (A;, A;) is calculated by
mi Mj
H(Ai, Aj) == D> plair, aj) loglplair, aj)]. (38)
r=1I=1

This interdependence redundancy measure evaluates the
degree of deviation from independence between two
attributes [37]. In particular, R(A;; Aj) = 1 means that the
attributes A; and A; are strictly dependent on each other
while R(A;; Aj) = 0 indicates that they are statistically
independent. If the value of R(A;; Aj) is between O and 1,
we can say that these two attributes are partially dependent.
Since the number of attribute values has no effect on the result
of interdependence redundancy measure, it is perceived as a
more ideal index to measure the dependence degree between
different categorical attributes.

Utilizing the interdependence measure, we can maintain
a d x d relationship matrix R to store the dependence degree
of each pair of attributes. Each element R (i, j) of this matrix
is given by R(i, j) = R(A;; Aj). It is obvious that R is
a symmetric matrix with all diagonal elements equal to 1.
To consider the interdependent attributes simultaneously in
distance measure, for each attribute A,, we find out all the
attributes that have obvious interdependence with it and store
them in a set denoted as S,. In particular, the set S, is
constructed by

Sy ={AilR(A;; Aj) > B, 1 <i <d} (39)

where f is a specific threshold. Subsequently, the dis-
tance metric for categorical values in considering the
dependence relationship between different attributes can be
defined as

D(xir, xj;) = Z R(r, )D((xir, xi1), (xjr, xj1))  (40)
AI€S,

where

D((xir, xir), (xjr, Xj1))

_ | p(Grir, xit) = (xjr, Xj1))s if xip # xjr
O(xir, xj1) p((xir, Xit) = (Xjr, xj1)),  if xir = X
(41)
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The vector equality probability p((x;r, xi1) = (xjr, xj1)) here
is calculated by

p((xir, xit) = (xXjr, xj1)) = p(Xir, Xit) - p~ (Xir, Xi1)
+p(Xjr, xj1) - P~ (xjr, Xj1)
= p(A; = xir N A = xi1|X)
p(Ar = xir N A = x| X)
+p(A, = Xjr NAp = )Cj1|X)
p(Ar =xjr NAp = x| X).

Specially, when A; = A,, we have R(r, ) =
D((xir, xit), (xjr, xj1)) = 6(Xir, Xjr) p(Xir = Xjr)-

It can be observed that when we utilize the further defined
metric to measure the distance between two categorical values
from one attribute, not only the frequency probability of these
two values, but also the co-occurrent probability of them with
other values from highly correlated attributes are investigated.
Moreover, if we assume that all the attributes are totally
independent of each other, R will become an identity matrix
and the set S, will only contain one item A, for all
r € {1,2,...,d}. Under the circumstances, (40) will degen-
erate to (25). That is, the distance metric defined by (25) is
actually a special case of the one given by (40).

(42)
1 and

D. Algorithm for Distance Computation
and Time Complexity Analysis

Based on the proposed distance metric, for the given
categorical data set X, the algorithm to calculate the
distance between each pair of objects can be summarized
as Algorithm 2.

Next, we further analyze the time complexity of this
algorithm. Since the proposed distance metric needs to
calculate the joint probability of attribute values, as suggested
in [14], we can utilize (1/2)d(d — 1) matrices to store the
co-occurrence of the values between any pair of attributes.
A complete scan of the entire data set is needed to built
these matrices and the time cost is O(d>m>n), where m is the
average number of different values that can be chosen by each
attribute. Subsequently, the computational cost of constructing
the relationship matrix R is O (d?>m?). Given two data objects,
calculating the distance along one attribute A, according
to (40) needs O(d,) time, where d, = |S,| stands for the
number of elements in the set S;. Therefore, the computational
cost needed to calculate the distance between any pair of
objects is 0(dd), where d = (1/d) Zle |Sr]. In conclusion,
the time cost of Algorithm 2 is O(d?m?*n + d*m? + dd).
From the practical view point, we have d <d,and m usually
is a constant. Consequently, the time complexity of proposed
method is O(d?n). This is the same as the metrics proposed
in [5], [12], and [14].

IV. EXPERIMENTS
To investigate the effectiveness of the unsupervised distance
metric for the categorical data proposed in this paper,
two different kinds of experiments have been conducted on
six real data sets in comparison with the existing distance
metrics. The first experiment is to validate the ability of the
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Algorithm 2 Distance Calculation for Categorical Data

1: Input: data set X = {x1,Xp,...,X;}

: For each pair of attributes (A, A;) (r,l € {1,2,...,d}), calculate R(A,; A;) according to Eq. (37).

2: Output: D(x;,x;) for i, j € {1,2,...,n}
3: Calculate ps(A,) and pr(A,) for each attribute A, according to Eq. (27) and Eq. (28).
4
5: Construct the relationship matrix K.
6: Get the index set S, for each attribute A, by S, = {{|R(r,]) > f,1 <[ < d}.
7: Choose two objects x; and x; from X.
8: Let D(x;,x;) =0 and w =0.
9: for r =1 to d do
10: if x; # xj, then
11 D(xir, xjr) = ZES: R, D p((xir, xi) = (xjr, Xj1))
ShE
12: w, = ps(Ay)
13:  else
14 D(xir, Xjr) = zZs: R(r, 1)o(xit, xj1) p((Xir, Xi1) = (Xjr, Xj1))
SV
15 wr = pr(Ay)
16: end if

17 w=w-+ w,

18:  D(x;,X;) = D(x;,X;) + w,D(xir, Xjr)
19: end for

20: D(Xi,Xj) = D(Xi,Xj)/w

proposed distance metric in discriminating different clusters
and the other one is to investigate its effectiveness in the
unsupervised clustering analysis.

A. Cluster Discrimination

It is known that a cluster partition on a data set is to
make sure that the similarities between objects in the same
cluster are high while the similarities between objects in
different clusters are low. As distance metric is a kind of
important and frequently used dissimilarity metric, its ability
in the cluster discrimination is a significant criterion to eval-
vate its effectiveness in the data analysis. That is, given
a data set with true class labels, a good distance metric
should make the intracluster distances as small as possible
and the intercluster distances as large as possible. Therefore,
to investigate the cluster discrimination ability of proposed
distance metric, we utilized it to calculate the average
intracluster and intercluster distances for some categorical data
sets from the UCI Machine Learning Data Repository (URL:
http://archive.ics.uci.edu/ml/). According to [12], for a cluster
C, of data set X with n, objects, the average intracluster
distance is calculated by

ZX;ECr ZX_,‘ECr D(Xi’ X])

AAD(C,) = -
nr

Moreover, for every two clusters C, with n, objects and
C; with n; objects, the average intercluster distance is given by

ZX,‘EC, ZX_/EC; D(Xi’ X])
npny '

AED(CV’ Cf) =

In addition, since the distances calculated with the different
metrics usually have the different scales, it is better to nor-
malize the result with the maximum distance value obtained

on the data set to ensure a fair comparison. Furthermore, in
our experiments, the value of the threshold parameter f in the
proposed metric was set equal to the average interdependence
redundancy of all attribute pairs. That is, we let f = fo, where
Po is calculated by

L dd
B= ﬁZ}:Z}R(AiQ Aj).
i=1 j=

The information of the data sets we utilized is as follows.

1) Congressional Voting Records Data Set: There are
435 votes based on 16 key features and each vote
comes from one of the two different party affiliations:
1) democrat (267 votes) and 2) republican (168 votes).

2) Wisconsin Breast Cancer Database (WBCD): This data
set has 699 instances described by nine categorical
attributes with the values from 1 to 10. Each instance
belongs to one of the two clusters labeled by benign
(contains 458 instances) and malignant (contains
241 instances).

3) Mushroom Data Set: It contains hypothetical samples
corresponding to 23 species of gilled mushrooms in the
Agaricus and Lepiota family. Each sample is described
by 22 attributes and labeled with edible or poisonous.
In total, 8124 samples are included, and 2480 of them
have missing attribute values. In our experiments, the
5644 samples without missing values have been adopted.

4) Small Soybean Database: There are 47 instances charac-
terized by 35 multivalued categorical attributes. Accord-
ing to the different kinds of diseases, all the instances
should be divided into four groups.

5) Car Evaluation Database: It contains 1728 car samples
derived from a simple decision model that evaluates
cars according to six different aspects. Each sample is
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TABLE III
AVERAGE INTRACLUSTER/INTERCLUSTER DISTANCE OBTAINED BY THE
DIFFERENT METRICS ON THE VOTING DATA SET

Hamming distance metric Proposed distance metric
Clusters (& Cs Clusters Ci C5
C1 0.4330 0.6757 Ch 0.3542  0.6380
Co 0.6757 0.3125 Cs 0.6380 0.2237
TABLE IV

AVERAGE INTRACLUSTER/INTERCLUSTER DISTANCE OBTAINED BY THE
DIFFERENT METRICS ON THE WBCD DATA SET

Hamming distance metric Proposed distance metric

Clusters (& Cs Clusters Ci [
C1 0.3796  0.8716 Ch 0.1699  0.6380
Co 0.8716 0.8128 Co 0.6380 0.2655

TABLE V
AVERAGE INTRACLUSTER/INTERCLUSTER DISTANCE OBTAINED BY THE
DIFFERENT METRICS ON THE MUSHROOM DATA SET

Hamming distance metric Proposed distance metric

Clusters Ci Cs Clusters Ch Co
Ch 0.4700 0.6414 Ch 0.3882 0.5774
Cs 0.6414  0.4945 Co 0.5774 0.3876

labeled with one of the four categories: 1) unacceptable;
2) acceptable; 3) good; and 4) very good.

6) Zoo Data Set: This data set consists of 101 instances
represented by 16 attributes, in which each instance
belongs to one of the seven animal categories.

The average intracluster distance of each cluster and the
average intercluster distance between each pair of clusters
obtained by the proposed distance metric on the six data sets
have been presented in Tables III-VIII. For a comparative
study, the results obtained by the Hamming distance metric
have also been listed in the tables. It can be roughly observed
from these tables that, for the Soybean and Zoo data sets, the
average intracluster distances calculated based on the proposed
distance metric have a significant decrease in comparison with
those obtained by the Hamming distance, while the intercluster
distances obtained by these two metrics are comparable.
Moreover, although the intercluster and intracluster distances
obtained by proposed metric are all smaller than that obtained
by the Hamming distance on the other four data sets, the
differences between intracluster and intercluster distances in
the result of the proposed metric are larger than that of the
Hamming distance. This indicates that the proposed distance
metric can better distinguish the different clusters in these
data sets.

Furthermore, to present the experimental result simply
and clearly, we proposed a new criterion, namely, cluster-
discrimination index (CDI) based on the average intracluster
and intercluster distance. For a data set with k clusters, the
value of this index was calculated by

. Zk: AAD(C,)
k= 7 X4 AED(C, Cp)

r=1
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That is, the value of CDI is determined by the average ratio
of intracluster distance to the intercluster distance. In general,
a smaller value of CDI indicates a better discrimination on
the cluster structure of the data set. Table IX records the
CDI values obtained by different distance metrics on each
data set. In Table IX, Ahmad’s distance, ABDM, and DILCA
stand for the distance metrics presented in [12], [S], and [14],
respectively. DM1, DM2, and DM3 are the three cases of
proposed distance metric. In particular, DM1 means the dis-
tance metric defined by (26), DM2 means the distance metric
expressed by (29), which is adjusted by the dynamic weights
without considering the relationship between attributes, and
DM3 stands for the complete distance metric calculated
by Algorithm 2. The values highlighted in bold imply the best
results among the seven metrics on each data set.

It can be found from the table that the DM3 metric has
obtained the best result on five tested data sets and the average
improvement is over 24% in comparison with the Hamming
distance metric. Both without considering the attribute inter-
dependence and weights, the average performance of DM1
metric is still over 12% better than the Hamming distance. This
result indicates that quantifying distance between categorical
values with frequency probability rather than constant is more
reasonable for the analysis of relationship between categorical
objects. Comparing the performance of DM2 and DM3, we
can find that the information of interdependence between
attributes is important for distance measurement. Making a
good use of this information can significantly improve the
effectiveness of the learning method on categorical data.
It can also be observed that the DM2 and DM3 metrics
have very similar results on the WBCD data set and have
the same performance on the Car data sets. This is because
the dependence degree between attributes in these two data
sets is very low such that there is only one pair of attributes,
whose value of the interdependence redundancy measure has
exceeded the threshold Sy in the WBCD data set and the
dependence degree of every pair of different attributes in the
Car data set is smaller than the setting value of £.

Moreover, the performance of Ahmad’s distance metric also
has a significant improvement compared with the Hamming
distance on Voting, WBCD, Soybean, and Zoo data sets, and
it has obtained the best result on the Zoo data set, while the
result of DM3 is in the second place on it. However, for
the Car data set whose relationship matrix R is an identity
matrix, i.e., each attribute is statistically independent of
all the other attributes, Ahmad’s distance as well as
ABDM and DILCA metrics cannot get the CDI result as they
quantified the distance between every pair of data samples
as 0. This result is consistent with the analysis in Section II-C.
In addition, for the Mushroom data set, the average intracluster
and intercluster distances obtained by Ahmad’s metric are as
follows:

AAD(C)) = 0.2831, AED(Cy, C») = 0.2536
AED(Cy, C3) = 0.2536, AAD(C) = 0.2944.

It can be observed that the average intracluster distances are
larger than the intercluster distance. Therefore, the obtained
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TABLE VI
AVERAGE INTRACLUSTER/INTERCLUSTER DISTANCE OBTAINED BY THE DIFFERENT METRICS ON THE SOYBEAN DATA SET

Hamming distance metric Proposed distance metric
Clusters Ch Co Cs Cy Clusters Ch Co Cs Cy
Ch 0.2368 0.6632  0.6011 0.6421 Ch 0.1095 0.6149 0.5233  0.5651
Co 0.6632 0.2379 0.8237 0.7616 Co 0.6149 0.0744 0.8877 0.8287
Cs 0.6011 0.8237 0.2463 0.4985 Cs 0.5233  0.8877 0.1392 0.3752
Cy 0.6421 0.7616 0.4985 0.2968 Cy 0.5651 0.8287 0.3752 0.1839
TABLE VII

AVERAGE INTRACLUSTER/INTERCLUSTER DISTANCE OBTAINED BY THE DIFFERENT METRICS ON THE CAR DATA SET

Hamming distance metric Proposed distance metric
Clusters Ch Co Cs Cy Clusters Ch [ Cs Cy
Ch 0.6958 0.7433  0.7423  0.7507 Ci 0.5165 0.5688 0.5753  0.5881
Co 0.7344  0.6486 0.6503  0.6366 Co 0.5688 0.4526 0.4526 0.4306
Cs 0.7423  0.6503 0.5489 0.5886 Cs 0.5753 04526 0.3721 0.3961
Cy 0.7507 0.6366 0.5886 0.4707 Cy 0.5881 0.4306 0.3961 0.2612
TABLE VIII

AVERAGE INTRACLUSTER/INTERCLUSTER DISTANCE OBTAINED BY THE DIFFERENT METRICS ON THE ZOO DATA SET

Hamming distance metric Proposed distance metric
Clusters C1 s Cs Cy Cs Cs [of Clusters C1 Cs Cs Cy Cs Cs Cr
Cy 0.18 0.60 044 059 047 0.65 0.68 Cy 0.17 0.73 052 0.67 057 0.72 0.77
Cs 0.60 0.14 042 055 046 046 0.52 Cy 0.73 0.11 044 055 051 042 048
Cs 044 042 021 033 027 051 042 Cs 052 044 023 033 030 051 044
Cy 059 055 033 0.08 034 070 045 Cy 0.67 055 033 0.06 034 0.68 046
Cs 047 046 027 034 008 048 0.12 Cs 0.57 051 030 034 007 052 041
Cs 0.65 046 051 0.69 048 0.12 0.35 Cs 072 042 051 0.68 052 0.12 0.32
Cr 0.68 052 042 045 037 035 021 Cy 077 048 044 046 041 032 0.17
TABLE IX
CDI OBTAINED BY THE DIFFERENT METRICS ON FOUR REAL DATA SETS

Data sets =~ Hamming Distance = Ahmad’s Distance =ABDM DILCA  DMI DM2 DM3

Voting 0.5517 0.4660 0.7235 0.4920 0.5198 0.5030 0.4529

WBCD 0.6840 0.5031 1.6688  0.3437 03734 0.3424 0.3374

Mushroom 0.7519 1.1388 1.7336  0.6800 0.7150 0.6914 0.6717

Soybean 0.3856 0.2511 0.2930  0.2531 0.3174 0.2545 0.2086

Car 0.8614 - - - 0.8477 0.7919 0.7919

Zoo 0.3045 0.2618 0.4849  0.2809 0.3091 0.2960 0.2656

CDI value is larger than 1, which is inconsistent with the
property of clusters. Similar results have also been obtained by
the ABDM method on the WBCD and Mushroom data sets.
By contrast, the DILCA metric, which is also an indirect
measure, had much better performance on these two data sets.
The reason may be that the DILCA method does not use all the
other attributes to represent the current one, but only selects
the most relevant attributes. This implies that considering
irrelevant attributes together may degrade the performance of
distance metric.

B. Study of the Threshold Parameter

In the proposed distance metric, we have a threshold
parameter S to be set in advance. In general, the value
of B has effect on the number of attributes that should be
jointly considered in the distance calculation. In particular,
a too small S will result in many attributes with

insignificant interdependence relationship being jointly con-
sidered. The dependence information between these attributes
actually has negligible contribution to the distance measure,
and will lead an unnecessarily increase in the computation
load. By contrast, a too large value of f will lead to the loss
of useful dependence information and degrade the contribution
of correlated attributes to the distance measure. In practice,
we find that an appropriate selection is to let § be equal to
the average interdependence redundancy of all attribute pairs,
ie., Bo.

Furthermore, to experimentally investigate the impact of
the threshold parameter S on the effectiveness of proposed
distance metric, we have utilized the DM3 metric with the
different values of f to calculate the intracluster and inter-
cluster distances for the six data sets. The curves that depict
the changing trend of obtained CDI values with increasing
have been shown in Fig. 1. From Fig. 1, we can find that,
when g is very small (e.g., f < 0.1), the performance of
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Fig. 1.
(d) Soybean data set, (e) Car data set, and (f) Zoo data set.
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CDI obtained by the proposed metric with the different values of f on (a) Voting data set, (b) WBCD data set, (c¢) Mushroom data set,

TABLE X
CLUSTERING ERRORS OBTAINED BY k-MODES ALGORITHM WITH THE DIFFERENT DISTANCE METRICS

Data sets ~ Hamming Distance =~ Ahmad’s Distance ABDM DILCA DM3
Voting 0.138740.0065 0.12504-0.0022 0.18644+0.1180  0.1195+0.0032  0.1217£0.0026
WBCD 0.1650+0.1594 0.126440.0890 0.12304+0.0590  0.1164+0.1151  0.0902£0.0891
Mushroom 0.293240.1596 0.45954-0.0406 0.32584+0.1284  0.2450+0.1359  0.2357+0.0851
Soybean 0.1830+0.1430 0.1609+0.1580 0.2736+0.1459  0.1809+0.1689  0.1334+0.1285
Car 0.6410+0.0381 - - - 0.6278+0.0283
Zoo 0.2998+0.1024 0.2529+0.0884 0.288540.1053  0.2624+0.0979  0.2563£0.0898

DM3 metric generally improves as the value of f increases.
This is because, when the threshold £ is too small, many
useless relationships between attributes are considered, which
will degrade the accuracy of obtained object distances.
By contrast, when £ is large to a certain degree (e.g., § > 0.3),
the performance of DM3 metric often degrades obviously
as f increases. Here, Car is a special data set, in which the
attributes are totally independent of each other. Therefore,
changing the value of § has no influence on the performance
of DM3 on it. Moreover, the performance of DM3
with f equal to Sy has also been indicated in Fig. 1. Overall,
o is a good choice for f as it can get satisfying practical
effectiveness without spending useless computations.

C. Clustering Analysis

In general, clustering analysis based on distance measure is
to partition the given objects into several clusters such that the
distances between objects in the same cluster are small while
the distances between objects in different clusters are large.
That is, the distance metric plays a key role in clustering accu-
racy. Therefore, in this experiment, we further investigated the
effectiveness of the proposed distance metric by embedding it
into the framework of the k-modes algorithm [45], which is

the most popular distance-based clustering method for purely
categorical data, and comparing its clustering result with the
original k-modes method (i.e., the k-modes algorithm with the
Hamming distance metric) and the k-modes algorithm with
Ahmad’s distance, ABDM, and DILCA metrics. According
to [46], the clustering accuracy is a direct criterion to evaluate
clustering result, which is defined as

> iz 0(ci, map(l;))
n

ACC =

where ¢; stands for the provided label, map(/;) is a mapping
function that maps the obtained cluster label /; to the equiv-
alent label from the data corpus, and the delta function
o(ci, map(l;)) 1 only if ¢; = map(/;), otherwise O.
Correspondingly, the clustering error rate is computed
as e =1— ACC.

In our experiments, the clustering analysis was conducted on
the six categorical data sets: 1) Voting; 2) WBCD; 3) Mush-
room; 4) Soybean; 5) Car; and 6) Zoo. Each algorithm has
been executed 50 times on every data set, and the average
clustering error rate as well as the standard deviation in
error has been recorded in Table X. Moreover, the graphical
representation of the clustering results for the five methods



1076

Clustering Error Rate

Voting

T T
1 Mean of error rate

|

T T
ABDM DILCA DM3

(a)

Soybean

T T
1 Mean of error rate

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 5, MAY 2016

Clustering Error Rate

WBCD
T

T T
[T Mean of error rate]

Hamming

Ahmad

ABDM

(b

Car

pilcA  DM3

T T
1 Mean of error rate]

Clustering Error Rate

°

°

°
1

°
IS
!

°
!

°

°

Mushroom

T T
1 Mean of error rate

Aninad

ABDM

©

Zoo

oiflca D3

Clustering Error Rate
Clustering Error Rate

T T
1 Mean of error rate]

Clustering Error Rate

T T T T T T T
Hamming ~ Ahmad  ABDM  DILCA DM3 Hamming ~ Ahmad

()

T T T T T T T T
ABDM  DILCA DM3 Hamming ~ Ahmad  ABDM  DILCA D3

(e) ()

Fig. 2. Graphical representation of clustering error rate and standard deviation for different methods on (a) Voting data set, (b) WBCD data set, (c) Mushroom

data set, (d) Soybean data set, (e) Car data set, and (f) Zoo data set.

is shown in Fig. 2. It can be observed that, for distance-
based clustering on categorical data, the k-modes algorithm
with the proposed distance metric has a competitive advantage
in terms of clustering accuracy compared with the other four
methods. DM3 has obtained the best result on four data sets.
The average improvement in clustering accuracy on these six
data sets obtained by DM3 metric is over 20% in comparison
with the Hamming distance. In addition, although the k-modes
algorithm with Ahmad’s distance metric is superior to the
original k-modes method on Voting, WBCD, and Soybean data
sets and gets the best result on Zoo data set, its performance
degrades significantly on the other two data sets. In particular,
for the Car data set, since the distance between each pair of
data objects has been estimated as 0 according to Ahmad’s,
ABDM, and DILCA metrics, the k-modes algorithm based on
them could not get a reasonable result, as they had classified
all the objects into a single cluster.

In addition, to make comprehensive evaluation for these
clustering algorithms’ performance, three more popular
validity indices, namely, rand index (RI), normalized
mutual information (NMI), and Davies—Bouldin Index (DBI),
were further adopted in this paper. Among these indices,
RI and NMI are external criteria, whereas DBI belongs to
internal criteria. The definitions of these three indices are as
follows.

1) Rand Index:

B TP + TN
" TP+ FP+FEN+TN

RI

where TP, TN, FP, and FN stand for true positive, true
negative, false positive, and false negative, respectively.

2) Normalized Mutual Information:
k N, j
iz Zj:l n;,jlog (Zlnnj)
k i J
\/( 2 i1 nilog %) ( Z;‘:l n;jlog r;_/)

where ¢ stands for the true number of classes, k is
the number of clusters obtained by the algorithm,
n;,j denotes the number of agreements between cluster i
and class j, n; is the number of data objects in cluster i,
n; is the number of objects in class j, and n is the
number of objects in the whole data set.

3) Davies—Bouldin Index:

k
DBI = 1 max (ﬁ)
k= j# \D(ui, puj)
where u; is the mode of cluster i, A; is the average
distance of all objects in cluster i to cluster mode y;, and
D(u;, uj) denotes the distance between cluster modes
Ui and MHj.

In general, both RI and NMI have values from interval
[0, 1] and larger values of them indicate better clustering
performance. In contrast, a smaller value of DBI is usually
preferred. Nevertheless, similar to other internal criteria, DBI
has the potential drawback that a good value does not nec-
essarily imply a better clustering result. The evaluations of
clustering outcomes obtained by the k-modes algorithm with
different distance metrics have been listed in Tables XI-XIII
in the form of the means and standard deviations of RI, NMI,
and DBI, respectively. From the statistical result, we can find
that the performance of the k-modes algorithm with DM3 is
also superior to the other algorithms according to these

NMI =
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TABLE XI
CLUSTERING PERFORMANCE IN TERMS OF RI OF k-MODES ALGORITHM WITH THE DIFFERENT DISTANCE METRICS
Data sets ~ Hamming Distance =~ Ahmad’s Distance ABDM DILCA DM3
Voting 0.7599+0.0098 0.7808+0.0033 0.6856+0.1324  0.7890+0.0022  0.782340.0016
WBCD 0.7768+0.1525 0.7877+0.1024 0.7894+0.0787  0.8353+0.1298  0.8827+0.0752
Mushroom 0.6209+0.1133 0.5048+0.0075 0.6025+0.1134  0.6661£0.1092  0.67324-0.0880
Soybean 0.8863+0.0744 0.9029+0.1084 0.7900£0.1213  0.9059+0.0801  0.9314+0.0758
Car 0.4905£0.0174 - - - 0.5059+0.0123
Z0o 0.882240.0492 0.9029+0.0440 0.8535+0.0786  0.8991+£0.0490  0.9064+0.0450
TABLE XII
CLUSTERING PERFORMANCE IN TERMS OF NMI OF k-MODES ALGORITHM WITH THE DIFFERENT DISTANCE METRICS
Data sets ~ Hamming Distance =~ Ahmad’s Distance ABDM DILCA DM3
Voting 0.4483£0.0211 0.4908=+0.0098 0.3048+0.2475  0.5161+0.0034  0.498740.0078
WBCD 0.4788+0.2435 0.5116+0.1715 0.4854+0.1157 0.6208+0.1818  0.6917+0.1304
Mushroom 0.2556+0.1877 0.0027£0.0026 0.2221+0.2154  0.3081+£0.1714  0.318240.1372
Soybean 0.8183+0.1175 0.8749+0.1335 0.7188+0.1527 0.8743+0.1075  0.8991+0.1089
Car 0.0467£0.0241 - - - 0.07254+0.0253
Zoo 0.7615+0.0702 0.8042+0.0567 0.7432+0.0854  0.7917+£0.0744  0.7927+0.0630
TABLE XIII
CLUSTERING PERFORMANCE IN TERMS OF DBI OF k-MODES ALGORITHM WITH THE DIFFERENT DISTANCE METRICS
Data sets ~ Hamming Distance =~ Ahmad’s Distance ABDM DILCA DM3
Voting 0.5576+0.0066 0.4039+0.0020 2.4576£2.3897  0.457940.0028  0.39030.0011
WBCD 1.5912+0.9618 1.4773£0.6859 3.4899+1.2946  0.5602+0.1284  0.4058+0.0310
Mushroom 1.235740.4301 0.8043+0.1546 15.9025+8.7200  0.9352+0.4968  0.8773+0.3868
Soybean 0.9733£0.1862 0.7665+0.2280 2.3589+1.6608  0.849140.3817  0.7576+0.1821
Car 2.0481+£0.6170 - - - 1.6078+0.6015
Zoo 1.0528+0.2703 1.1216+£0.4934 6.3431+£6.2965  1.3701£0.7805 1.141740.6611

TABLE XIV
CLUSTERING ERRORS OBTAINED BY k-MODES ALGORITHM

WITH PROPOSED DISTANCE METRICS

Data sets DM1 DM2 DM3
Voting 0.1321£0.0045  0.130740.0046  0.1217+0.0026
WBCD 0.0987+£0.0907 0.09814+0.0972  0.0902+0.0891

Mushroom  0.264940.0986  0.2483+0.1187  0.2357+0.0851
Soybean 0.1800+£0.1604  0.148740.1321  0.1334+0.1285
Car 0.6329+0.0361 0.627940.0281 0.6278+0.0283
700 0.2798+£0.0936  0.265640.0864  0.2563+0.0898

three evaluation criteria, as it has obtained the best result in
most cases.

Taken together, the results of this experiment indicate that
the proposed distance metric is more appropriate for the
unsupervised data analysis as it can better reveal the true
relationship between categorical data objects. Moreover, to
further investigate the effect of the different strategies in the
proposed metric, we have compared the clustering results of
DM1, DM2, and DM3 in Table XIV. We can find that both
dynamic attribute weights and relevant attribute analysis have
improved the performance of the proposed distance metric.
In addition, the simple metric DM1 still had much better
performance than the Hamming distance in the clustering
analysis. This has validated the effectiveness of the proposed
distance definition.

V. CONCLUSION

In this paper, we have presented a new distance metric,
which measures the distance between categorical data based

on the frequency probability of each attribute value in the
whole data set. Dynamic weight has been designed to adjust
the contribution of each attribute distance to the whole object
distance. Moreover, the interdependence redundancy measure
has been utilized to evaluate the dependency degree between
each pair of attributes. Subsequently, the distance between
two values from one attribute is not only measured by their
own frequency probabilities, but also determined by the values
of other attributes that have high interdependence with the
calculated one. Experiments on benchmark data sets have
shown the effectiveness of the proposed metric in comparison
with the existing counterparts.
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