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Abstract—A cohesive subgraph of k-truss requires that each
edge has at least (k — 2) triangles, which has wide applications of
modeling social communities and complex network visualization.
Recently, the study of truss maximization has gained attention,
which aims to enlarge k-truss most by inserting b new edges into a
graph G. However, existing maximization methods suffer from a
stiff strategy of complete truss conversion, that is either converting
the whole (k — 1)-truss component to k-truss or converting no edge
to k-truss without using any budget. To tackle this bottleneck,
we develop a novel partial conversion strategy to explore more
insertion plans.

Based on partial conversion strategy, we revisit the problem
of truss maximization in this paper and propose adaptive
solutions by achieving more new Fk-truss edges. Specifically,
we first decompose all (k — 1)-truss into a series of disjoint
components via the triangle connectivity, where each component’s
conversion is independent to each other. Then, for each (k —1)-
truss component, we explore possible insertion plans of partial
conversions. An intuitive method is to randomly insert a budget
no more than b new edges and check the expected profit of new
k-truss edges. Obviously, this method is inefficient due to a large
search space of edge insertions and many times of expensive
k-truss verification. To improve it, we propose a new minimum-
cut based approach, which converts a subgraph of (k — 1)-truss
component into a flow graph with weighted edges and finds a key
of maximum-flow answer corresponding to a k-truss conversion
plan with the minimum budget consumption. Next, we develop
a new dynamic programming framework to find the best way
to allocate the budget b to all components. We design two fast
dynamic programming algorithms and analyze the complexities
theoretically. In addition, we explore the case of a large given
budget b and extend our techniques to handle the conversion of
(k—h)-truss into k-truss for 2 < h < k—2. Extensive experiment
results demonstrate the superiority of our algorithms against the
state-of-the-art methods.

Index Terms—k-truss, graph enhancement, minimum cut,
maximization, dynamic

I. INTRODUCTION

Graph is a fundamental model to represent various entities
and their complex relationships in many real applications.
For example, a social network can be modeled as a graph,
where the nodes represent users and the edges are their
diverse relationships, e.g., friendships, followers/followees,
posting/replying comments, and so on. Other real graph appli-
cations include the traffic networks, communication networks,
financial networks, and biological networks. In the graph
theory, k-truss denotes a dense subgraph where every edge
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Fig. 1. An example of graph G with the truss number k£ = 4 and the budget
b = 2. The edges in grey areas are 4-truss edges. Two components C; and Ca
are shown in dashed box in Fig. 1(a). Moreover, Fig. 1(b) and Fig. 1(c) show
two plans of complete conversion and partial conversion in C1, respectively.
The updated graph in Fig. 1(d) is inserted by two new edges {(h, ¢), (a,%)},
which achieves 8 new 4-truss edges [1]. Our solution inserts {(h,c), (d, j)}
to achieve a better answer of 10 new 4-truss edges as shown in Fig. 1(e).

is contained in at least k — 2 triangles in this subgraph. The k-
truss structure enjoys several nice properties, such as the high
density, strong (k — 1)-edge connectivity, and polynomial-time
computations. The k-truss is widely used to model closely
connected community in social networks [2]-[8].

Motivations and applications. In this paper, we revisit and
study the problem of k-truss maximization, which aims to en-
large the k-truss of the graph by adding no more than b edges.
As a similar concept of k-truss, k-core requires that each
vertex has at least k neighbors within this subgraph. A k-truss
is also a (k—1)-core. As shown in recent studies [1], [9]-[13],
[44], truss/core maximizations focus on strengthening the size
of k-truss/k-core for connectivity improvement by inserting
new edges, which have many real applications including the
identification of missing defense links in military networks [1],
improving transportation network connectivity [9], boosting
the stability of P2P networks [10], [11], and enhancing social
group engagement [12], [13]. For instance, the k-truss of flight
networks has (k — 1)-edge connectivity, reflecting even if any
less than (k — 1) edges are disconnected, the whole k-truss
component keeps connected. Thus, a large k-truss of flight



networks ensures the strong connectivity of airline routes. Note
that different from the existing truss maximization [1], our
work investigates a wide range of budget b for insertion cases,
where b ranges from a tinny small one to an extremely large
one. Our study provides a comprehensive solution set for real
application scenarios, especially when there exists a limited
number of budget on edge insertions, e.g., in the economic
consideration of coupon promotions by inviting friends to
participate in activities on social networks, and also adding
new routes for improving connectivity in flight networks.

Challenges. Compared with k-core, k-truss is conceptually
more rigorous by requiring the minimum constraint on 3-
cliques as triangles, instead of simple node degrees. The
task of k-truss maximization is more technically challenging
than the k-core maximization [9], which lies on three-fold
aspects. First, an incremental number of targeted candidate
edges. The truss maximization enlarges k-truss to convert
candidate edges by providing more feasible triangles by in-
serting edges. However, the newly inserted edges may still
has no enough support of triangles to be retained in k-truss,
thus they also become those target candidates to be new k-
truss edge. This leads to an incremental number of targeted
candidates in search space. Second, the constraint of k-truss
is more restrictive than k-core. The inserted edges need to
be kept in k-truss for providing feasible support, otherwise
they are removed during truss decomposition. Thus, an edge
may not be converted into k-truss by adding 2(k — 2) edges,
because newly added edges may not be in k-truss. On the
contrary, the solution of core maximization [9] adds a new
edge between two candidate (k — 1)-shell nodes to certainly
increase their degrees. Third, the verification of new k-truss
edges by invoking truss decomposition is more time costly
than that of new k-core nodes by the core decomposition.

The truss maximization problem has been shown to be NP-
hard [1]. A recent work of CBTM [1] partitions the (k — 1)-
truss into many smaller components, where each component
is a connected subgraph and does not intersect with others. It
then calculates the score (the increased size of new k-truss) and
the cost (budget consumed) of converting each component into
k-truss, respectively. Next, it uses dynamic programming (DP)
to find the optimal combination of insertion plans in different
components, according to the total budget. This solution has
been shown to be effective with a full conversion strategy,
but still suffers from two drawbacks as follows. First of all,
some components may be too large to be converted within the
budget b. Or some edges of a component may need lots of
budgets, lowering the average conversion rate. Secondly, the
(k — 1)-truss may be a small part of the graph, leading to a
bad performance when the budget b or parameter k is large.
This means that it may not find more insertion plans when the
(k — 1)-truss has been fully converted to k-truss.

To address the above challenges and limitations, we propose
a novel framework PCFR with several new techniques for truss
maximization. Specifically, our PCFR framework consists of
three new parts. First, we develop the truss-based partial

conversion to explore more insertion plans. Second, we design
a new dynamic programming to consider multiple insertion
choices, but not binary one any more. Third, we propose a
new strategy to convert (k — h)-truss into k-truss to handle
a large budget b. We illustrate the advantage of our proposed
PCFR method against the competitor CBTM [1].

Example 1. Fig. 1 shows an example of truss maximization
in graph G. The whole graph G is the 3-truss, because
every edge is contained in at least one triangle. The target
is to have more edges become 4-truss, with the budget no
more than 2. There are two symmetrical components in G,
Cl (edges {(a’> h)’ (f7 h)7 (a7 f)7 (C’ f)? (C’ i)’ (f’ Z)}) and 02
(edges {(bvj)v (g’j)v (b7 g)? (d7 9)7 (d7 k)v (g’ k)}) Take C1 as
an example. It can be completely converted to 4-truss by
inserting edges {(h, c), (a,1)} and gets 8 new 4-truss edges, as
shown in Fig. 1 (b). Alternatively, it can be partially converted
to 4-truss by inserting one edge (c,h) and gets 5 new 4-truss
edges, as shown in Fig. 1 (c). [1] only adopts the complete
conversion strategy and gets the result of Fig. 1 (d), where the
budget used and the number of new 4-truss edges are (2,8).
Our solution considers both complete conversion and partial
conversion and gets the result of (2,10), as shown in Fig. 1
(e), which is better than that of [1].

We first introduce the partial conversion. We intend to
address the challenge of how to partially convert a component
to k-truss. An immediate idea is to randomly insert edges and
record edges that are in k-truss. It is effective on (k — 1)-truss
but not effective on (k — h)-truss when h > 1. Therefore,
we convert a component to a directed acyclic graph (DAG)
that can show the hierarchical structure of the component.
We then convert the DAG to a flow graph and find the
minimum cut to get a conversion plan. There is a parameter
that can change the structure of the flow graph, so there are
many different minimum cuts and many conversion plans with
different budgets by adjusting the parameter.

Next, we present new dynamic programming algorithms,
which find the best combination of multiple partial conversion
choices. We build a table with size of |C| x b, where |C| is
the number of components. The value of position (7, j) means
the highest score of previous ¢ components within budget j,
which is obtained by comparing at most b conversion plans of
the ith component, so the time complexity of this algorithm is
O(|C|b?). We also propose an approximate method that sorts
all conversion plans first in a decreasing order, whose time
complexity can be O(|C|b) when |C| > b.

Third, we develop advanced techniques of (k — h)-truss
conversion. We extend techniques mentioned above to handle
(k — h)-truss, so we can get the structure of (k — h)-truss
and find potential areas for conversion. However, converting
edges in (k — h)-truss is more difficult than converting edges
in (k—1)-truss. So our idea is to convert them into a k-clique
(k nodes connected to each other), because a k-clique is also a
k-truss, which can ensure the successful conversion. The cost
for converting (k—h)-truss is larger, as h increases. Therefore,
we first convert the (k — 1)-truss, and the superfluous budget



is used to convert (k— h)-truss, as h increases. To summarize,
we make the following contributions in this paper.

e We propose new methods to partially convert a compo-
nent to k-truss. The idea is to peel a component into
different subgraphs and convert them to many flow graphs
with edge weights. For all generated flow graphs, we
conduct the minimum cut to find the optimal answers,
corresponding to the insertion plans with small budgets.
(Section IV)

e We propose a new dynamic programming framework to
handle a component with multiple insertion plans for
partial conversions. We further optimize the algorithm
complexity of our dynamic programming methods by
distinguishing important parameters. (Section V)

e We extend the above approaches to handle (k — h)-
truss conversion for h > 2, ensuring that our solution
can find insertion plans for an extremely large budget b.
(Section VI)

e Extensive experiments on nine real-world datasets vali-
date the effectiveness and efficiency of our algorithms.
(Section VII)

We discuss related work in Section II and conclude the

paper in Section VIII.

II. RELATED WORK

We study related work including the fruss mining, dense
subgraph maintenance, and network structure enhancement.

Truss mining. We summarize the studies of k-truss mining
in terms of two categories. The first one is accelerating the
computation of k-truss under various settings; and the second
one is generalizing the concept of k-truss on complex graphs.
Specifically, many works speed up the computation of k-
truss with parallel computing [14], cloud computing [15],
GPU [16], FPGA [17]. The concept of k-truss has also been
generalized on various graphs, including directed graphs [7],
uncertain graphs [18]-[22], signed graphs [23], [24], attribute
graphs [25]-[27], dynamic graphs [3], [28]-[31], geo-social
graphs [32], [33], bipartite graphs [34], weighted graphs [35],
multilayer graphs [36], and simplicial complexes [37].

Dense subgraph maintenance. The task of dense subgraph
maintenance aims to update a particular subgraph pattern
in dynamic graphs, including k-core maintenance [38]-[42]
and k-truss maintenance [3], [29]-[31]. These works con-
sider maintaining dense subgraph structures when the graph
changes, such as edges insertion or deletion. However, the
graph change is not known in advance and cannot be controlled
by their maintenance algorithms. Different from these, our
problem of truss maximization can select new edges to be
inserted for truss maintenance, which aims at enlarging the
k-truss most.

Network structure enhancement. In the literature, there
exist several studies on network structure enhancement, such
as reachability enhancement, core maximization, and truss
maximization by inserting edges or anchoring nodes. The
reachability can be enhanced by inserting new edges [43].

[10], [11] enlarge k-core by adding edges to those nodes
with low degree. The problem of k-core/k-truss anchoring
[12], [44] enlarges the k-core/k-truss by anchoring a few
nodes that will not be peeled in the core/truss decomposition.
Although the goal of [44] and ours is maximizing k-truss,
[44] uses a greedy algorithm to anchor nodes but we adopt
DP-based strategies for selecting new edge insertions. The
most related works to ours are [1] and [9], which partition
(k — 1)-truss/(k — h)-core into small components and convert
these components to k-truss/k-core by adding edges. Then,
both work [1] [9] use different dynamic programming to find
the optimal combination. Our solution follows their frame-
work. However, we proposes two methods that can partially
convert a component to k-truss, while [1] only considers the
complete conversion. Therefore, we can use small budgets to
get a better answer of feasible conversions. In addition, our
new dynamic programming framework can support multiple
conversion plans for a component. What’s more, we propose
a new algorithm that can convert (k— h)-truss to k-truss when
h > 1, which is more challenging than converting (k — h)-
core to k-core [9]. Therefore, we can convert more edges into
k-truss when the given budget b is large.

III. PRELIMINARIES

Given a graph G = (V, E') where V is the node set and E
is the edge set, we represent H = (Viy, Fy) as a subgraph of
G with Vg CV and Ey C E. For a node u € Vg, Ny (u)
is the node set containing all neighbors of node u in H, i.e.,
Ny(u) = {v € Vg|(u,v) € Eg}. The support number of
an edge (u,v) € Fpy is the number of triangles containing
this edge in the subgraph H, i.e., supy((u,v)) = |[Ng(u) N
Ny (v)|. Based on these concepts, the formal definition of k-
truss is given as follows.

Definition 1 (K-Truss [45]). A subgraph H = (Vy,Ey) is
the k-truss if H is the largest subgraph of G such that all
edges have support numbers no less than k — 2 in H, i.e.,
V(u,v) € Eg, supy((u,v)) >k — 2.

Next, we give a useful definition of trussness, which can be
stored into an index to enable fast query of the k-truss.

Definition 2 (Trussness). The trussness 7(e) of an edge e in
the graph G is defined as the largest number k such that there
exists a non-empty k-truss containing e.

The k-truss has a hierarchical structure, i.e., k-truss C (k —
1)-truss. For instance, the edge e must be in 7(e)-truss and
(7(e) — 1)-truss. In addition, we use T}, to represent the edge
set of k-truss. We denote all edges with the same trussness k as
the k-class Ey, i.e., B, = {e € E|r(e) = k}. In other words,
the edge set of k-truss can be represented as T3 = Uf;",‘:" E;,
where kpax is the largest number k that there exists a non-
empty k-truss in G.

Problem (Truss Maximization). Given a graph G, a budget
b € Z%, and the truss number k > 2, the truss maximization
problem is to insert at most b new edges into G such that the
edge size of k-truss in the new graph is the largest.



Algorithm 1 Random

Input: graph GG, component ¢, budget b, repeating times 7.
Output: exp-revenue S. and new edges map F..
1: Initialization: S., P., Pool + {J;
2: for all (z,y) € E., (z,2) € E, (y,2) ¢ E do
3:  Add (y, z) to Pool;
4: for all i< [1,7] do
5:
6
7

Take an integer b, at random from [1, b];
Take b, edges C) at random from Pool;
Try to insert C; into G and get the exp-revenue pair (P, vy),
where P, C C, is the edges that converted to k-truss and v,
the number of edges in E. and P, that converted to k-truss;
8 if v, > S.[|P;|]] then
9: Scl|Pr|]  vr, Pe[|Pr|] < Pr;
10: Remove useless values in S, to keep S. strictly increasing;
11: return S., P,;

IV. INTERPOLATION

We first introduce our two-phase framework for solving the
truss maximization problem. We introduce Phase-I techniques
in this section and Phase-II techniques in the next section.

A. Overview

Our framework includes Phase-I of converting each com-
ponent to k-truss separately and Phase-II of finding the best
budget allocation plan for each component.

Phase-I: Component Interpolation. For each component, we
find as many insertion plans as possible, with different budgets
used. We use the function S. to represent the relationship
between the budget and the score for the component ¢, which
is strictly increasing. Therefore, this phase can be seen as
interpolating S. as much as possible and with high scores.
We propose two algorithms to interpolate S.. The first one
is to randomly insert edges and calculate edges that become
k-truss edges (Section IV-B). The second one is to convert a
component to a flow graph and conduct minimum cut to find
exp-revenue pairs with small budgets (Section IV-C).
Phase-II: Dynamic Programming. According to S. of all
components, we can use DP to find the optimal combination to
allocate the budget to each component and obtain the highest
total score. We propose two algorithms with different time
complexity. Section V-B introduces a dynamic programming
algorithm to solve our problem. Section V-D introduces an-
other algorithm that compresses S, to accelerate the computa-
tion. This algorithm has a significant time improvement when
there are a large number of components.

B. Random Interpolation

First of all, we give some useful definitions.

Definition 3 (Truss Connectivity). For two connected edges
e1 = (a,b) and es = (b,c), if they have the same truss-
ness k and the triangle they form exists in the k-truss, i.e.,
k = 7((a,b)) = 7((b,0)) < 7((a,c)), e1 and ey are truss
connected, donated as e1 <> es. Moreover, for two arbitrary
edges ey and es, if there exits an edge e such that e <;> e1 and

e <> eq, e1 and ey are also truss connected.
k

Motivated by the idea of CBTM [1], we take a component ¢
as a subgraph of the (k—1)-class in this work. We require that
every edge of c is truss connected to each other. In addition,
all edges that are truss connected to edges in ¢ are also in
c. Thus, the components do not intersect with each other and
the conversion of one component does not affect others. All
conversions adopted in [1] are complete conversion.

In the following, we propose a novel definition of exp-
revenue insertion candidates, which is very useful for our de-
signed partial conversions. The exp-revenue pair of component
¢ is (P,v), corresponding to a pair of an edge set P and a
score v, where P is newly inserted edges and v is the revenue
of new k-truss edges. In other words, the edges in P are not in
the graph. And v is the number of edges in £/.U P that newly
become k-truss edges after inserting edges in P. Obviously,
1 < |P| < b, indicating a possible plan of partial conversions.
Since edges not in the k-truss are peeled in the computation of
k-truss, they do not contribute to our solution. As a result, we
assume all edges in P can successfully become k-truss edges.

Definition 4 (Exp-revenue Insertion Candidates S). For a
component ¢, S, represents the relationship between edge size
of exp-revenue pairs and the maximum revenue, i.e., S.[xr] =
max{v;||P;| = x}, for all (P;,v;), where P, CV xV — E,
0 < |Pi| < b. S is the set including S. of all components,
ie, § = [S1,5, - ,8(¢|, where |C| is the number of
components.

In practice, if two exp-revenue pairs have the same revenue
of new k-truss score v, we prefer to choose a set of smaller
edge insertions. Therefore, we can remove some values in
S. to keep a discontinuous but strictly increasing order. Note
that throughout the following paper, we call the exp-revenue
insertion candidates S as the exp-revenue for short.

Example 2. Given graph G in Fig. 1 (a), there are two compo-
nents Cy and Cs in 3-class. An exp-revenue pair (P,v) of Cy
can be ({(c,h)},5), which means 5 edges becoming 4-truss
edges when inserting (c, h) into G. There are two exp-revenue
pairs that can be considered, such as ({(c,h), (a,i)},8) and
({(¢,h)},5). Thus, Sc, becomes {1 : 5,2 : 8}. There are two
symmetrical components in 3-class. Therefore, the exp-revenue
S=1[5,,5c,]=[{1:5,2:8},{1:5,2:8}]

Next, we introduce our random algorithm to find insertion
plans for a component. Our general idea is randomly inserting
at most b edges into the component ¢ and obtaining score
S¢[x], where z is the number of inserted edges successfully
in the k-truss, 0 < x < b.

Algorithm 1 shows the process of random algorithm. We use
r to represent the number of random times in each component.
First of all, we find edges that can form triangles with edges
in the component and save them as the candidature edge set
Pool (lines 2-3), and new edges are chosen from it. Then,
we repeat r times (line 4) and in each time, we randomly
choose a budget b, € [1,b] (line 5). We randomly choose b,
edges from Pool and form new edge set C,. (line 6). We try to
insert these edges into GG and get the result v, and P, (line 7).



The number v, is the number of edges in the component c
that successfully become k-truss edges. P, is the edge set in
C, that successfully become k-truss edges. Note that the real
budget used is | P.|, rather than b,., where |P.| < b,. Not all
edges in C, can be successfully transformed into k-truss edges.
Edges cannot be in k-truss are peeled in the computation of
k-truss, thus not inserting them do not affect the result. The
result is saved into S, and P, (line 9). Finally, we remove
some budgets in S; and P, such that S, is strictly increasing
(line 10). Because we prefer to choose an exp-revenue pair
that has the same or higher score with a smaller budget.

This method is extremely effective when converting (k—1)-
truss to k-truss and b is small. However, this method involves
lots of insertions, which may have an expensive cost when the
graph is large. What’s more, this method can hardly find exp-
revenue pairs when converting (k — h)-truss to k-truss, where
h > 1. Therefore, we propose another method based on the
analysis of graph structure.

C. Interpolation by Minimum Cut

For each component, we want to get as many scores as
possible with small budgets. In the process of truss decom-
position, due to the collapse of some key edges, many edges
may be peeled and cannot become a k-truss. If we can anchor
these edges, there would be lots of edges becoming the k-truss
and the budget used is much smaller than that of the complete
conversion of components.

Therefore, our method has the following steps: 1. transform
the component to a directed acyclic graph (DAG), which can
show its structure; 2. construct a flow graph according to the
DAG:; 3. conduct the minimum cut to find the most valuable
part of the component; and 4. convert these edges to k-truss.
We have a parameter that can change the structure of the flow
graph in step 2, hence the steps 2-4 can be repeated many
times and different exp-revenue pairs are obtained.

Step 1: DAG Construction. First of all, let’s introduce the
concept of onion layer.

Definition 5 (Onion Layer L). The onion layer of an edge
e is defined as the rounds in which the edge was removed,
ie, L(e) = max{0,l € N : supy(e) +2 > k} + 1, where
k = 7(e), H is a subgraph that Eg = T, — {e'|7(¢/) =
k,L(e') < l}. Given edges ey and ey, e1 = ey means either
7(e1) > 7(ez) or 7(e1) = 7(e2), L(ey) > L(es). And e1 = es
means either ey = ez or 7(e1) = 7(ez2), L(e1) = L(ea).

The onion layer shows the peeling order of edges in the
graph. For two edges e, eo, if e; > es, it means that e; is
peeled later than es. If we anchor es by inserting some edges,
e; may also become the k-truss.

In order to further utilize the properties of onion layer,
we propose the definition of onion layer connectivity and
Block B. Given a triangle A,,., edges (z,y) and (y,z)
are onion layer connected if £ = 7((z,y)) = 7((y,2)),
Il = L((z,y)) = L((y,2)) and (z,2) = (x,y), donated as

(z,y) © (y, z). Moreover, if e; e are onion layer connected

and e, e3 are also onion layer connected, we define e; es to
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Fig. 2. The graph G and the DAG constructed by the component C7 of
3-class in GG. Green numbers shows the onion layers of edges in 3-class.
be onion layer connected. We divide a component into many
Blocks B and edges in each B are onion layer connected and
B is the maximum. Here we use L(B) to represent the onion
layer of B. Since we merge edges with the same onion layer
into B, two connected Blocks are in different onion layers.
If we treat each Block as a vertex and add one directed link
between two connected Blocks (from high-level onion layer
to low-level onion layer), we can convert a component into a
DAG. For two Blocks By and Bz, L(By) > L(B3), (B1, B2)
represents the directed link from B; to By in the DAG. We
use W(Bj, Bs) to represent the weight of link (Bj, Ba) in
the DAG. Let Q C Bj be the edge set that edges in () are
connected to By. For example, if e; € By, ea € Bo, €1, €2
and ez are in the same triangle, es > es, we say e; € Q.
We define the weight of the link (Bj, Bs) as the size of
Q, ie., W(By,B2) = |Q|- The weight of link (By, Bs) is
also the capacity of the link, which represents the difficulty of
converting Bj into the k-truss without converting Bo. We add
a new sink vertex t into the DAG and add a new link between
B; and t if B; has no out-degree (d; = Eljli‘l W(B;, Bj) =0,
| B| is the number of Blocks), and W (B;, t) is the size of B;.
By constructing the DAG, we transform the truss maximization
problem to a cut problem, i.e., divide the Blocks into two parts.
Blocks in the part containing the sink vertex ¢ are discarded
and other blocks are converted to k-truss. The real cost (the
number of inserted edges) may differ from estimates (the cut),
but this method can suggest the part that is easy to convert.

Example 3. Fig. 2 (b) shows an example of a DAG constructed
from the component Cy of 3-class in Fig. 2 (a). The onion
layers of edges in 3-class in Fig. 2 (a) are labeled in green
numbers. Each vertex in Fig. 2 (b) represents a Block and
the white number in it represents the number of edges in this
Block. For example, Block A = {(a, f), (¢, f)} contains two
edges (a, f) and (c, f), because they are onion layer con-
nected, and Blocks B = {(a,h),(f,h)}, C = {(c, i), (f,4)}.
The blue numbers are the weight of links between blocks,
which shows the cost of converting a Block. For instance,
there is one edge (a, f) in A being connected to edges in B in
triangle, thus W (A, B) = 1. W(B,t) = 2 because Block B
has no out-degree and we connect it to the sink vertex t and
the weight is the number of edges in B. If we want to convert
edges in all blocks to k-truss edges, we can simply cut (B, t)
and (C,t), which needs the cost of 4 and can convert 6 edges.

We can find the minimum cut of the DAG, but it only has
one exp-revenue pair. Our framework can find higher score
with more exp-revenue pairs. We need an algorithm to find
more valid cut plans from the DAG. Next, we construct many
flow graphs, according to the DAG, and then find the minimum



cut to get more exp-revenue pairs.

Step 2: Construction of Flow Graphs. Inspired by [46] that
employs a parameter g to generate subgraphs with varying
densities, we propose a novel graph construction technique
that incorporates multiple min-cuts controlled by the parameter
g. First, we introduce a new source vertex s to the DAG
in Step 1 and connect it to all Blocks B; by adding links
(s, B;). The weight of each (s, B;) is set as the sum of
all link weights in the DAG, denoted as g. Next, we add
links (B;,t) from each Block B; to the target vertex ¢.
The weight W (B;,t) of each (B;,t) is determined by the
expression max{0,g — wy L(B;) — ws|B;| — d;}, where g,
wy, and wsy are three parameters. Importantly, we ensure
that W (DB;,¢) remains non-negative. With these steps, we
successfully construct the flow graph. The parameters w; and
wy are positive values that play a crucial role in adjusting
the weight of the onion layer and the size of the Blocks,
respectively. Generally, Blocks with a higher onion layer or
larger size are more likely to be selected rather than to be
discarded. On the other hand, the parameter g is a non-
negative number that acts as a gate in our graph construction.
Specifically, we add an link (s, B;) from the source vertex s
to each Block B;, and a link (B;,t) from each Block B; to
the target vertex t. While the capacity from s to B; is fixed
at g, the capacity from B; to ¢ is controlled by the parameter
g, taking into account the values of w; and wo. By adjusting
the parameter g, we can effectively control the maximum flow
to the sink vertex ¢, which is also referred to as the minimum
cut. This provides us with a mechanism to regulate the flow
and optimize graph construction.

Step 3: The Minimum Cut of Flow Graphs. A partition
of the flow graph into two sets, S and 7', such that s € S
and ¢ € T, determines a s-t cut. The capacity of the cut
c(S,T) is the sum of weights of links between S and T.
We anchor Blocks in S, i.e., we choose this part of the
component and convert them to the k-truss. A minimum
capacity cut can provide a conversion exp-revenue pair with a
small budget. We use h.,, w, (g) to represent the score obtained
by a minimum cut with parameter g, i.e., set the value of
g and construct a flow graph, then conduct a s-t cut and

Py s (9) = ZBieS |BZ|

Lemma 1. h.,, .,(g) is non-negative and decreases with g.

Proof. hy, w,(g) is the sum of Block size in S. Therefore, it
is non-negative. When g increases, for each Block, the inflow
capacity remains the same, and the outflow capacity becomes
larger, thus the inflow is more likely to be saturated, and the
Block is more likely to be partitioned to 7'. Consequently, the
number of blocks in S decreases and hy,, ., (g) decreases. [

The maximum value of Ay, ., (g) is the number of edges
in the component, i.e., all Blocks locate in S, which can be
achieved by setting ¢ = 0 (no flow to ¢). The minimum
value of hyy, w,(g) is O, ie., all Blocks are in 7', which
can be achieved by setting ¢ = 2q¢ + wiLmax + W2Bmax
(W (B;,t) > W(s, B;)), where Ly,.x is the largest onion

layer in the component and B,y is the largest Block size.
Since huy, w,(g) decreases with g according to Lemma 1, we
can binary search g in [0, 2q + w1 Lipax + W2 Bmax] to obtain
different cut plans. For each cut plan, we only convert Blocks
in S to k-truss. Therefore, a component can have multiple
conversion exp-revenue pairs.

Finally, we study how to completely convert edges in S to
be in the k-truss.

Step 4: Complete Conversion of a Subgraph. The conver-
sion strategy in [1] has the following drawbacks:

1) If unstable edges (support less than k — 2) cannot be
converted to stable edges (support no less than k& — 2), they
are removed and the algorithm need to restart, which may
cause loss of scores and long running time.

2) Even unstable edges has been converted to stable edges,
they may still cannot be in the k-truss. Because new inserted
edges may be connected to other components and when other
components cannot be converted to k-truss, this component
are also affected.

For the drawback 1, we propose an improved method. For
an unstable edge e, we first try to find a new edge that can
increase the support number of e, such that e can become
a stable edge. If e cannot become the stable edge by just
inserting one edge, we use Clique Strategy, i.e., find other
(k — 2) nodes and convert these k nodes to the k-clique. K-
clique is a subgraph composed of k£ nodes where each two
nodes are connected. A k-clique is the smallest k-truss. Thus
if we want to convert an edge to be the k-truss, we can find
k nodes that contains two endpoints of this unstable edge and
add edges between any two nodes. The number of inserted
edges may be O(k?), which is a large number when & is not
small. Therefore, we also adopt Greedy Strategy, i.e., insert
edges one by one to cover the most edges that are unstable.
Finally, we choose an exp-revenue pair with lower budget
between these two strategies. The method may cost lots of
budget, but it is acceptable because we need to make sure that
the edges can be successfully converted to k-truss edges.

To address drawback 2, we propose component-based sup-
port number.

Definition 6 (CSup). Given a graph G, a component ¢ and
an integer k, the component based support number of an edge
é € E. is defined as the support number in the subgraph of k-
truss and ¢, i.e., CSup(é) = supy (é), where Ex = {e|r(e) >
korec€ E.}.

CSup requires the edges involved in the calculation of
support number to be in the same component. Otherwise, if
other components are not chosen, these edges are still peeled.

Algorithm 2 shows how to convert edges S to k-truss edges.
We first compute C'Sup for edges in S in the subgraph H,
where H consists of the k-truss of the graph and S (line 2).
If an edge e has C'Sup(e) < k — 2, we mark it as an unstable
edge (line 3). In line 4, we find all edges that are not in the
graph and can form a triangle with edges in S. Some of these
edges may increase the C'Sup of more than one edge in S.
Therefore, we greedily select an edge that covers the most



Algorithm 2 Complete Conversion

Algorithm 3 Sequential DP

Input: graph G, the number k, the target edge set S.

Qutput: the candidate edge set P.

: Get subgraph H that includes edges in k-truss and S

: Compute C'Sup for edges in S;

: Label e € S whose C'Sup(e) < k — 2 as unstable edges;

: Greedily find new edges to make unstable edges stable
(CSup(e) > k — 2) and put into P;

: while Je € S with CSup(e) < k—2 do

Use Clique Strategy and Greedy Strategy to make e stable.

Choose one with the lowest budget and save it to P;

7: return P;

AW~

QW

edges that are unstable each time. The selected edges also
need to be stable edges and are put into P. However, some
edges in .S may still be unstable (line 5). For this case, we
have two strategies, as mentioned above. We choose the one
of the two strategies with the fewest number of inserted edges
and save the result in P (line 6).

Example 4. Fig. 3(a) shows an example of DAG. Fig. 3(b)-
(f) show 5 different flow graphs constructed from the DAG in
Fig. 3(a), with different parameters. The sum of link weights
in Fig. 3(a) is ¢ = 60, thus we add a source vertex s and
links (s, B;) to all Blocks with the capacity 60, as shown in
Fig. 3(b)-(f) red links. The label on each link is the current
Sflow and the capacity of this link. We also add links (B;,t)
from each Block to the sink vertex t (black links in Fig. 3(b)-
(f)). For Fig. 3(b)-(e), w1 = 1, wy = 1, thus gmax = 2q +
W1 Lpax + WoBpax = 2 X604+ 1x241x2 =124 and
g € [0,124]. We set different g for Fig. 3(b)-(e), i.e., 0, 124,
62, 55, and get different scores, ie., 5, 0, 2, 3, respectively.
Specifically, in Fig. 3(e) with g = 55, for Block d, its onion
layer is 1 and its size is 1, thus W1 (d,t) = g — w1 L(B;) —
wa|B;| —d; =55 —1—1—0 = 53. The original weight in
Fig. 3(a) is Wy(d,t) = 5. Therefore, we sum them up and
W(d,t) = 58 in Fig. 3(e). We can find the minimum cut, as
the red dash line shown in Fig. 3(e), which costs a budget of
20 and achieves the score of 3 in Fig. 3(a). Similarly, we can
find the minimum cut in Fig. 3(f), which costs a budget of 25
and achieves the score of 4 in Fig. 3(a). Combining results in
Fig. 3(b)-(f)), we have pairs of cost and score in Fig. 3(a) as
{(0,0),(15,2), (20, 3),(25,4), (30,5) }.

V. MULTIPLE BUDGET ASSIGNMENTS FRAMEWORK

In previous section, we compute many exp-revenue pairs of
a component with different budgets. However, it is difficult
to determine the best budget for the component. Therefore,
our idea is to take all exp-revenue pairs into consider and let
dynamic programming process decide which exp-revenue pair
to use. It is worth mentioning that our new strategy provides
a framework for solving this problem. For each component,
we can use various algorithms to obtain different exp-revenue
pairs and apply them to our framework.

Next, we introduce our new problem of multiple budgets
assignment.

Input: exp-revenue S = [S1, 52, -, S|¢|], budget b.
Qutput: the dynamic programming table DP.

1: Initialization: DP; ; < 0 for ¢ € [0,|C|] and j € [0, b];
2: for all i€ [1,|C|] do

3: forall j€[1,b] do

4 for all w € [0,;] do

5: if DP;_1.,+ Sl[j — ’LL] > DP; ; then
6: DP;; < DPi_1,. + Si[j — ul;

7: return DP;

A. The problem of multiple budgets assignment

Assume that there are components C, labeled as 1, - - - , |C].
For each component ¢ € [1,|C|], we have the exp-revenue
Se[:], and if the budget used in this component is 2 and S.[z]
is the score obtained. The total budget for all components is
b and we wants to get the highest total score. We assume
that all S.[:], ¢ € [1,|C]|] are known. We also assume that
the budget allocation of one component does not affect that
of other components. Here is the multiple budgets assignment
problem.

Problem 1. Given the total budget b and a series of exp-
revenue Sc[z.] > 0, z. € N, 1 < ¢ < |C|, the problem is to
find the best allocation plan x = [r1,--- ,2|c|] to maximize
total score, i.e.,

IC|
X = arg max Z Selze]

x c=1
IC|
subject to Zxc <b.

c=1

(D

The dynamic programming solution mentioned in [1] is to
solve the 0-1 backpack problem, which is no longer applica-
ble to this problem. Therefore, we propose a new dynamic
programming solution.

B. Dynamic programming framework of sequential access

First of all, we introduce a table DP with size of (|C|+
1) x (b+1) , where the first row and the first column are set to
be 0, i.e., DFy 1.5 = 0 and D P10 = 0, and other values
are defined as follow.

DP, ; =max{DP;_1 . + S;[j — ullu € [0, j]},
where i € [1,|C|],7 € [1, ]

As shown in Equation 2, DPF; ; represents the maximum
total score only considering the previous ¢ components, with
budget used no more than j. For 0 < uw < j, S;[j — u]
represents the score of component ¢ with the budget j — .
Therefore, the value of D P; ; is the largest item by combining
the current component 4 and the results of previous (i — 1)
components.

Algorithm 3 presents the new dynamic programming pro-
cess. We need to compute |C| x b values of the DP table
(lines 2-6). For each value DPF; ;, we iterate over all DP;_y ,,
u < j (line 4), and find the largest one (line 5). Finally, we
return the calculated DP table (line 7).

2
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(a) A DAG

() h1,1(0) =5
Fig. 3. An example of DAG (a) and its flow graphs (b)-(f) obtained by changing parameters g, w1 and w2. For (b)-(e), w1 = 1 and wo = 1. For (f), w1 =1

(c) h1,1(124) =0
and wo = 10. The minimum cut is represented by a red dashed line.

C. Time complexity of Algorithm 3

The external two-layer loops are executed |C| X b times
(lines 2-6). The line 4 repeats at most b + 1 times. Thus, the
time complexity of Algorithm 3 is O(|C|b?).

However, O(|C|b?) may be a very large number when
|C| is large and b is not very small. In Algorithm 3, every
exp-revenue pair of a component is considered. In fact, if
an exp-revenue pair has a low conversion ratio, it can be
ignored. Therefore, we propose another dynamic programming
framework to solve the same problem, but has a different time
complexity.

D. Dynamic programming framework with sorted input

Next, we introduce another version of DP. We intend to
build a DP table with a size of (min{|C|,b} +1) x (b+ 1),
where the first row and the first column are set to be 0, i.e.,
DPy 1) = 0 and D Pjy.min{|c|,b}],0 = 0, and other values are
defined as follow.

DP,; =max{DP; ;_1,DP;_1;,
{DP;_1 0+ Sclj — ul|
x = Soli_1,u,x[c] =0, for u < j,c <|Cl},
{DPiw — Selx[c]] + Selj — u+x[d]]|
x = Soli_1,u,x[c] >0, for u < j,c < |C|}},
where 7 € [1, min{|C|,b}],j € [1,}]

As shown in Equation 3, DPF; ; is defined differently from
the one in Equation 2. It represents the maximum total score
that the number of chosen components and the used budget do
not exceed ¢ and j, respectively. Its value is chosen from the
largest of the four terms. If there are more optional components
or more budget, the score should be higher, thus the value of
DP; ; should not be less than DP; ;_; and DP;_; ;. We also
need Sol; ; to save the best allocation plan for DF; ;. As
for the third term {DP;_q, + S:[j — u]}, Vu < j,Ve < n,
Se[j — u] represents the score got by choosing component ¢
with the budget j — u. If component ¢ has not been chosen
by DP,_1, (x[c] = 0), we can try to add it and compare the
score with other values. In the forth term {DP; ,, — S.[x[c]] +
Sc[j —u+x][c]]}, we increase the budget without the increase
of the number of components. If component ¢ has been chosen
by DP; ,, and the budget used is x[c], we can try to use a lager
budget j — u + x[c] and compare the score with other values.
The advantage of this method is that we build a min{|C'|, b} xb

3)

(d) h1,1(62) =2

(e) h11(55) =3 () h1,10(70) = 4

Algorithm 4 Sorted DP

Input: exp-revenue S, budget b.
QOutput: the table D P and solutions Sol.

1: Initialization: DP; ; < 0, Sol; ; < 0, for ¢ € [0, min{|C|, b}],

Jj €[0,0];

2: Building b maximum heaps M with S;

3: for all 7 € [1, min{|C|,b}] do
for all j €[1,b] do
5: if DPl"j,1 > DPZ‘J' then
6: DPLJ‘ < DPi’jfl;
7
8

nok

SOli,j — SOli,jfl;
if DPZ;LJ' > DPi’j then

0 90

DPiyj < DPifl,j;

10: Sol; ; < Sol;—1,5;

11: forall uwe[l,5—1] do

12: Find a component ¢ in M[j — u] with the largest score
and ¢ ¢ Sol;—1,u;

13: if DP;i_1, + Sc[j — u] > DP;; then

14: DPij < DP, 1., + Selj — uJ;

15: Soli,j +— Soli—1,u;

16: Sol; jlc] + j —u;

17: for all ¢ € Sol; ;, by = Sol; [c] >0 do

18: for all all larger budget b, > b. that b, € S. do

19: if DPZ',]' — Sg[bc] -+ Sc[bu] > DPi,j-Hiu—bc then

20: DPi,j+bu—bc — DPi,j — Sc[bc] + Sc[bu];

21: SOli,j-!—bu—bC < Soli,]-;

22: SOli,jeru—bc [C] — by;

23: return DP, Sol;

table, rather than a |C| x b table. When b < |C|, this method
runs much faster than Algorithm 3.

Algorithm 4 presents the details of new dynamic program-
ming algorithm. We need to compute min{|C/|, b} x b values of
the DP table (lines 3-22). First of all, we compress S into M
for an easy of usage (line 2). M is a vector of size of b, where
M{i] is a maximum heap that sorts components from large to
small, according to their scores, for ¢ € [1,b]. In other words,
we first group components by desired budget, and then sort
each group by their scores. As a result, we can quickly find
the best option for a fixed budget. For each value DPF; ;, we
first directly compare it with previous values DF; ;_; (line 5)
and DP;_; ; (line 8) and take the maximum value. Next, we
iterate over all DP;_; ,,, u < j (line 11), and try a component
c that has the largest score when the budget is j — u and has
not been considered. For term 4 in Equation 3, for the sake of
efficiency, we do not calculate it through other tables, but use
the result of DPF; ; to calculate other tables. We iterate over
all components c used in DPF; ; (line 17), and try all budgets



TABLE I
DP TABLE BUILD BY ALGORITHM 3

blo|1[2]3]4]5
0O[0]0]|O0 0 0
A 0 3 3 3 3 3
B 0 3 5 7 7 7
(¢} 0| 4 7 9 11 12
TABLE II
DP TABLE BUILD BY ALGORITHM 4
b 0 1 2 3 4 5
0 0 0 0 0 0
1 0 4 5 6 6 6
{C:1} | {C:2} | {C:3} | {C:3} | {C:3}
2 0 4 7 8 9 10
{C:1} {A:1, {A:1, {A:1, {B:2,
C:1} C:2} C: 3} C: 3}
3 0 4 7 9 11 12
{C:1} {A:1, {A:1, {A:1, {A:1,
C:1} B:1, B: 2, B:2,
C:1} C:1} C:2}

b, that are larger than the current used budget b., and update
the value of DP; ;.4 3, . Finally, we return the calculated
DP table (line 23). Since we need to consider whether a
component has been used, we also need the set Sol to record
the selected components.

E. Time complexity of Algorithm 4

Building heaps M takes O(|C|b). The external two-layer
loops are executed min{|C|, b} x b times (lines 3-22). Terms 1
and 2 are executed once respectively. Line 11 repeats j times
and line 12 checks at most 7 + 1 times (the worst case is
that the first ¢ components in the heap have been selected)
and the size of the heap is at most |C|, thus term 3 takes
O(bmin{|C|, b} log(|C|)). For each component ¢, we can just
save conversion exp-revenue pairs whose budgets are no larger
than b. Line 17 repeats ¢ times and line 18 repeats at most
|Sc| < b times, thus term 4 is executed b x min{|C/, b} times.
Therefore, the time complexity of Algorithm 4 is O(|C|b +
b (min{b, |C})*log(|CY)).

This algorithm compresses S. and builds a smaller DP table
to accelerate the computation, which has a significant time
improvement when there are a large number of components
|C|. When b < |C|, the time complexity of Algorithm 4 is
close to O(|Cb), much faster than that of Algorithm 3, which
is O(|C|b?). However, it performs bad when b is very large
and obtains suboptimal results in some cases. Fortunately, in
practical applications, b < |C|, and the result is very close
to the optimal solution. In addition, our solution requires a
compromise between efficiency and score. Therefore, we use
both frameworks together to achieve the best performance.
When b > |C|, we use Algorithm 3, otherwise we use
Algorithm 4.

Example 5. Assume there are three components {A,B,C}
and budget b = 5. The exp-revenues are Sp = [3] (only
one budget), Sp = [2,4], S¢ = [4,5,6] (budget can be 1,
2, or 3). Table I and Table Il show the DP table built by
Algorithm 3 and Algorithm 4, respectively. For example, in
Table I, DP|2][2] = 5, because DP[1][1] 4+ Sg[l] = 5 is the
maximum. As another example, in Table 1I, DP[2][3] = 8§,
because it chooses S4[1] and Sc[2). The best allocation plan
is x = [1,2, 2] and the total score is 12. If we use the method

TABLE III
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

Component Conversion Budget Assignment

1] Full conversion Binary DP
O(m.d?) O(|C|b)

Random conversion Sequential DP

Ours in Algorithm 1 in Algorithm 3
O(me(de + rp)) o(|cpp?)
Min-cut conversion Sorted DP

in Section IV-C in Algorithm 4

O(tme(n? +d2) | O(C|b+ b*(min{b, |C[})* log(C]))

in [1] to solve this problem, it assumes that for a component,
either do not choose it, or convert it totally, i.e., Sy = [3],
Sp = [4], S¢ = [6] and x4 € {0,1}, zp € {0,2} and
xzc € {0,3}. Therefore, the best solution using the method in
[1] is x =[0,2, 3] and the total score is 10, which is smaller
than the result of our new method as 12.

FE. The Summary of Complexity Comparison

Our methods and the existing method [1] both have two
key steps: component conversion and budget assignment. [1]
adopts full conversion strategy and uses binary DP to solve the
0-1 backpack problem for budget assignment. Let us consider
a candidate (k — 1)-light component c¢. We denote the number
of nodes and edges as n, = |V(C)| and m. = |E(C)
respectively. The maximum node degree is d. in compo-
nent c. First, we analyze the time complexity of component
conversion on c. In the worst case, all edges in component
c need to be converted by the additional support of new
edges. For each candidate e = (u,v), it needs the number of
potential new edges that form triangles directly with e, which
is bounded by O(|N(v)| + |N(u)|) = O(d.). Thus, we have
a total of potential new edges O(m.d.). The time cost of
computing the support for all edges takes O(d.). Thus, the
time complexity of full conversion is O(mchQ). On the other
hand, our random-based partial conversion in Algorithm 1 first
finds all potential new edges in O(m.d.) time, then randomly
inserts no more than b edges, and checks the feasibility of
k-truss by truss maintenance algorithm in O(pm.), where p
is the arboricity of component ¢ with p < min{d., /mc}.
The above process needs to be repeated in 7 times for finding
good answers. Thus, the time complexity is O(m(d. + rp)).
In addition, our min-cut based partial conversion invokes the
minimum cut algorithm for finding candidates in O(m.n?)
time and conducting the conversion in O(m.d?) time. The
whole process repeating ¢ times has a time complexity of
O(tm.(n? + d2)) Next, we analyze the DP-based techniques
for budget assignment. Assume that we have a total of |C]
different components C' and a budget b. The binary 0-1 DP [1]
builds a |C| x b DP table, thus the time complexity is O(|C|b).
The time complexities of Sequential and Sorted DP algorithms
are presented in Section V, which cost more than binary DP
for achieving high-quality of combined answers.

[l

VI. EXTENSION TO HANDLE (k — h)-TRUSS

Previous sections show how to convert (k — 1)-class to k-
truss. However, in some cases where (k — 1)-class is empty or



Algorithm 5 General Framework

Input: graph G = (V, E), the number k, the budget b.
Output: the edge set A to be inserted.
1: Compute trussness 7(e) for edges e € E;
2K k-1, A+ 0;
3: while k¥ > 2 do
4:  Partition k’-truss to components;
5:  Compute exp-revenue S for components by Algorithm 1 and
techniques in Section IV-C;
6:  Using Algorithm 3 or Algorithm 4 to find at most b— | A| new
edges U;
7:  Insert U to G and update 7(e) for e € E;
8 A+ AuU;
9: if |A| > b then

10: break;
11: K« kK —1;
12: return A;

b is large, (k — 1)-class has been completely converted to k-
truss. This shows a budget surplus. Therefore, we also convert
(k — h)-truss to k-truss when & > 1 and b is enough. First of
all, we extend the definition of components of (k — 1)-truss
to (k — h)-truss.

Definition 7 (General Component). A general component c is
a connected subgraph where every edge e has k—h < 7(e) <
k.

We also extend the concept of onion layer as follows.

Definition 8 (General Onion Layer Lg). The general onion
layer of an edge e in a general component c, i.e., e € E., is de-
fined as the number of rounds in which the edge was removed
in the computation of k-truss, i.e., Lg(e) = max{0,l € N :
supy(e)+2 > k}+1, where H =T, UE.—{¢'|Lg(e') < 1}.

The general onion layer shows the structure of edges in the
(k—h)-truss but not in the k-truss. Obviously, when we anchor
all edges in the first general onion layer, i.e., Lg(e) = 1, the
whole component becomes the k-truss. Given the definitions of
general components and general onion layer, we can naturally
extend techniques in previous sections to (k — h)-truss.

Next, we present the general framework of converting (k —
h)-truss to k-truss. Algorithm 5 shows how to convert edges to
k-truss edges with budget b. We need three inputs: the graph
G, the number k£ and the budget b. First of all, we compute
the trussnesses of edges in the graph (line 1). We start from
(k — 1)-truss (line 2) and if the budget is enough, we decrease
k' to convert other trusses (line 11). For each k’-truss, we
first divide it to many general components (line 4) and build
exp-revenue using techniques in Section IV. Then, we use DP
in Section V to find the optimal combinations of components
and their budgets. The result is U and its size is no more than
b—|A|. We insert these edges U into G and update trussnesses
and save U to A. If all budgets are spent, the algorithm ends.
Otherwise, the algorithm continues to convert (k' — 1)-truss
(line 11).

VII. EXPERIMENTS

In this section, we evaluate our algorithms with other base-
line algorithms. The experiments are conducted on a Linux
Server with AMD EPYC 7742 (2.25 GHz, 25/64C) and 2T
main memory. All algorithms are implemented in C++.!

Datasets. We use nine real-world datasets as shown in Ta-
ble IV. The dataset Syracuse56 is from [48]. All other datasets
can be downloaded from SNAP [49]. Facebook, Syracuse56,
Brightkite, Gowalla and LiveJournal are friendship networks.
Enron is an email communication network. The dataset Twitter
is crawled from Twitter. The dataset Stanford is the Stanford
web graph. Wiki-Talk is a Wikipedia talk graph. All directed
graphs are converted to undirected graphs.

Competitors. We compare our algorithm PCFR with three
baseline algorithms, RD [1], GTM [1], and CBTM [1]. PCFR
contains all techniques proposed in this work. It uses random
method (Algorithm 1) to partially convert components in
(k — 1)-truss to k-truss and uses the flow method (Sec-
tion IV-C) to partially convert components in (k — h)-truss
to k-truss, where h is sequentially 1,2, --- 'k — 2. Then it
uses dynamic programming (Algorithm 3 when b > |C|,
otherwise Algorithm 4) to find the optimal combination. For
each component, Algorithm 1 tests 10 times (r = 10). The
minimum-cut based method in Section IV-C sets w; to 1, and
tests wo twice (1 or 10). For each case, it tests the value of g
10 times (¢ = 10). CBTM completely converts components
in (k — 1)-truss to k-truss (each component has only one
exp-revenue pair) and uses binary dynamic programming to
find the optimal combination. RD and GTM both first find a
candidate edge set C' where edges are not in the graph and
have support no less than k — 2, the insertion of which can
increase the support of edges in (k — 1)-truss. RD randomly
chooses b edges from C' as the result and directly inserts them
into the graph. GTM is a per-edge insertion greedy method
and uses candidate pruning techniques in [1]. We also modify
PCFR to test the effectiveness of our techniques. Algorithm
PCF removes the random method, Algorithm PCR removes
the flow method, compared with PCFR.

Exp-I: Efficiency evaluation. In this experiment, we compare
our algorithm PCFR with the baseline algorithms, RD, GTM
and CBTM. We set £ = 20 for five small datasets, and
k = 40 for four large datasets (Twitter, Stanford, Wiki-Talk,
LiveJournal), respectively. This parameter setting follows the
configuration in [1]. We set the budget b = 200 and report
the score (the increased edge size of new k-truss). We also
report the running time of algorithms. “-”” means the algorithm
cannot finish in 24 hours. As shown in Table IV, our algorithm
PCFR achieves the highest score than all baselines on all
datasets, because PCFR considers multiple exp-revenue pairs
for a component, which also include the complete conversion
plan by CBTM. On the other hand, for the same reason, PCFR
takes a longer time, but it is worth the extra time. Especially
on dataset Stanford, PCFR takes the same budget but achieves

Thttps://github.com/Max Truss/MaxTruss



TABLE IV
EFFICIENCY EVALUATION

Score Running Time (in seconds)
Network Vi |E]| dmas | kmas | |Cl —Rp—TGTM T CBTM T PCFR RD GTM CBTM | PCFR
Facebook 4,039 88,234 1,045 97 100 873 1278 1821 3635 3.51 62091 3.30 24.86
Enron 36,692 183,831 1,383 22 9 3204 2209 3858 5165 23.11 5037.56 27.26 382.90
Brightkite 58,228 214,078 1,134 43 55 852 611 989 1468 5.98 689.66 8.93 5.81
Syracuse56 13,654 543,982 1,340 59 354 1277 7234 7261 7482 131.62 79192 106.83 219.57
Gowalla 196,591 950,327 ) 3868 4439 4656 86.39 48295 113.84 193.84
Twitter 81,306 1,768,149 4139 7017 13583 131.38 21841 185.96 1071.62
Stanford 281,903 2,312,497 5007 4200 13111 112.90 2967.99 77.68 1023.20
Wiki-Talk 2,394,385 5,021,410 - 5400 5464 760.01 - 826.19 6581.90
LiveJournal 3,997,962 34,681,189 - 16412 20139 128.08 1041.07 227.07
10° 8000 p—, 1 CBTM
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Fig. 4. The score (left) and running time (right) of our algorithms and CBTM
by varying b on Syracuse56, k = 20.

more than 3 times of score than that of CBTM. For some
datasets, like Enron and Stanford, PCFR runs much slower
than CBTM, because PCFR also finds solutions in (k — h)-
truss, where h > 1, while CBTM only finds solutions in
(k — 1)-truss. For dataset LiveJournal, PCFR runs much faster
than CBTM, which shows the efficiency of Algorithm 4. RD
runs fast on many datasets, but has very low score. GTM runs
the slowest, because it involves too many truss maintenance
operations.

Exp-II: Parameter evaluation. In this experiment, we test
the efficiency of our algorithms by varying the total budget b,
the target trussness k, and the repeating times 7.

First of all, we test our algorithms by varying the budget
b. Fig. 4 reports the score and running time obtained by our
algorithms and the baseline algorithm CBTM, when k& = 20
on dataset Syracuse56. The blue numbers represent the value
of h, reflecting the (k — h)-class our algorithms handled.
When b < 3929, all algorithms convert edges in (k — 1)-
class and when b > 3929, our algorithms continue to convert
edges in (k — 2)-class. CBTM cannot handle the case when
b is extremely large (b = 2560 and 10240), thus we do
not plot these two points. If we only look at the results of
PCFR, we can find that the conversion rate (score/b) decreases
as the budget b increases. This is because we prefer to
prioritize edges with high conversion rate. Comparing PCFR
with CBTM, we can find that when b is very small or very
large, our algorithm can achieve better performance. This is
because when b is very small, our partial conversion plans
can get higher score. When b is very large, our algorithm
can find more candidate edges from (k — h)-truss. However,
when b is close to the number that can completely convert all
(k—1)-truss to k-truss, our algorithm and CBTM have similar
performance. In most cases, PCFR runs slower than other
algorithms. Because PCFR uses both techniques in PCF and
PCR. PCFR considers more cases than CBTM, but the running
time is much less than the complexities expected (O(|C[b?)
for PCFR and O(|C|b) for CBTM). PCR takes more time than

Fig. 5. The score (left) and running time (right) of our algorithms and CBTM
by varying k on dataset Syracuse56, b = 200.
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Fig. 6. Performance of PCR by varying r, with K = 20 and b = 200 in
subfigure (a) and the size of the largest component |E.|, the number of nodes
|B| and edges |Ep ac| in the corresponding DAG by varying k in subfigure
(b) on dataset Syracuse56.

PCF in most cases, because PCR uses a randomized algorithm
that needs to maintain trussnesses in every attempt.

Next, we test our algorithms by varying %k, when b = 200
on dataset Syracuse56, as shown in Fig. 5. The score has
no apparent relationship to k, because the structures of k-
class may differ from each other. But the size of the k-
truss decreases as k increases. As a result, the running time
roughly decreases with the increase of k. Our algorithms also
perform much better than CBTM when £k is large. The reasons
are twofold. First, the size of (k — 1)-truss is small when
k is large and our algorithms continue to convert (k — h)-
truss. Second, there are many components that CBTM cannot
convert since it is difficult to find edges with sufficient supports
when k is large. PCF runs faster than PCR when £ increases,
because PCR involves many truss maintenance operations,
which change more states of edges when k is larger. PCFR
runs faster than PCR when k& = 40, because PCR conducts
random insertions on (k—h)-truss, while PCFR only conducts
random insertions on (k — 1)-truss. The scores of PCFR and
PCR are almost the same, but PCFR runs much faster than
PCR, which shows the limitation of random algorithms on
(k — h)-truss for h > 1.

We also test our randomization algorithm PCR with differ-
ent repeating times. As shown in Fig. 6 (a), as r increases, the
score increases slowly, but the running time increases quickly.



TABLE V
THE SCORE OF BINARY (0-1) DP [1], SEQUENTIAL DP (ALGORITHM 3)
AND SORTED DP (ALGORITHM 4) BY VARYING b ON GOWALLA, k = 10
b | Binary DP | Sequential DP | Sorted DP

10 495 650 650
40 1526 2009 2009
160 4217 5084 5084
640 11904 13065 13065
2560 28966 32638 32627
10240 43562 43565 43565
s~ Binary DP

Sequential DP
10?{ —k— Sorted DP

7

10 40 160 640 256010240

budget

(a) Gowalla
Fig. 7. Running time of Binary DP, Sequential DP in Algorithm 3 and Sorted
DP in Algorithm 4 by varying b on Gowalla, k = 10, where |C| = 3727.

Consequently, in our experiments, we only set r = 10 for

efficiency.

Exp-III: DAG size evaluation. We report the size of a com-
ponent and the size of the transformed DAG in our algorithms,
as shown in Fig. 6 (b). We select the largest component of k-
class with different & on the dataset Syracuse56. |E.| is the
number of edges in the component. |B| and |Ep 4¢| represent
the number of vertices and links in the DAG, respectively.
In our algorithms, we merge connected edges in a component
with the same onion layers into a Block, which is the vertex of
the DAG, and two connected Blocks have a link in the DAG.
The result shows that the size of the DAG is much smaller
than that of the component. Accordingly, our algorithms can
efficiently handle large graphs. It also shows that the size of
DAG is smaller when k increases, because k-truss is more
cohesive and more edges are in the same onion layers.

Exp-IV: Efficiency and quality evaluation of three algo-
rithms: Binary DP, Sequential DP, and Sorted DP.

We compare two DP algorithms proposed in Section V,
as well as a binary version (Binary DP) modified from our
Sequential DP. For each component, Binary DP either chooses
it with the largest budget or does not choose it. We set
k = 10 and vary b on dataset Gowalla, where the number
of components |C| is 3727. Fig. 7 reports the running time
of three DP algorithms. When b < 640 < |C|, Sorted DP
performs better than Sequential DP. When b = 10240 > |C|,
Sequential DP runs faster. Thus, our algorithm PCFR uses
Sequential DP to find the best combination for b > |C| and
then uses Sorted DP for b < |C|. Binary DP and Sequential DP
have similar performance when b is not very small (b > 10),
because in practice, there are very few budget options for each
component to choose from. In addition, we also report the
quality of three DP algorithms, as shown in Table V. Although
Sorted DP obtains suboptimal results, the score difference is
very small, i.e., 11 when b = 2560. Sequential DP and Sorted
DP outperform Binary DP in most case for a small 5. When
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Fig. 8. Case study on social network Syracuse56. Here, k£ = 20. Black edges
represent the stable edges, red edges represent the unstable edges, green edges
represent the new inserted edges, and blue edges represent edges converted
to 20-truss edges.

the total budget is very large, i.e., b = 10240, three algorithms
achieve similar scores, because all components tend to be
completely converted.

Exp-V: Case study on social network Syracuse56. In this
experiment, we investigate the effectiveness of our algorithm
PCFR on Syracuse56, where nodes represent users and edges
represent their friendships on a social network Facebook. We
focus on a large candidate component for k-truss conversion
where k£ = 20. Fig. 8(a) shows the candidate component with
2,308 edges, of which 185 edges are unstable. To fully convert
all 2,308 edges into 20-truss, the complete conversion method
needs to insert 1,917 new edges to provide sufficient supports
for these unstable edges as shown in Fig. 8(b). In this way,
it achieves the conversion ratio of 225917 — 2.9 which is
pretty small. On the other hand, our partial conversion algo-
rithm only inserts 9 new edges, which converts 754 candidate
edges to k-truss edges as shown in Fig. 8(c). Our method
achieves a significant conversion ratio of % = 84.8, which
is much larger than 2.2 achieved by the complete conversion.
This shows practical usefulness of our proposed method in real
applications of truss maximization under a limited number of
budgets, especially in the economic consideration of coupon
promotions by inviting friends to participate in activities on
social networks, and also adding new routes for connectivity
extension in flight networks.

VIII. CONCLUSION

In this study, we focus on the truss maximization problem,
which involves identifying no more than b new edges to
expand the existing k-truss. Our approach involves dividing
the (k — h)-truss into separate components that do not affect
each other. Then we propose a minimum-cut based approach
to partially convert each component to k-truss, providing our
algorithms with a wider range of edge insertion plans. To
handle multiple budget assignments, we propose a framework
that enables the identification of the optimal combination of
these conversion options. Our algorithm, PCFR, demonstrates
the ability to effectively enlarge the k-truss across various
budget variations. We validate the effectiveness and efficiency
of our algorithms through extensive experiments.
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